NAVAL AIR STATION FORT WORTH JRB CARSWELL FIELD TEXAS #### ADMINISTRATIVE RECORD COVER SHEET AR File Number <u>6</u>98 File: 17-A-66 D.E. 698 ### Final Aerospace Museum Site (AMS) Closure Report NAS Fort Worth JRB, Texas #### Prepared for: Air Force Center for Environmental Excellence HSC/PKVCB Headquarters Human Systems Center Brooks Air Force Base, Texas 78235-5353 Prepared by: IT Corporation 312 Directors Drive Knoxville, Tennessee 37923 Contract No. F41624-94-D-8047 Delivery Order D0003 IT Project No. 774902 September 2001 NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page i of 1v #### Table of Contents_____ | | | Page 1 | |------|--------|---| | List | of Tab | olesiii | | List | of Fig | uresiii | | List | of Acr | onymsiv | | 1.0 | Intro | duction1 | | | 1.1 | Project Background1 | | | 1.2 | Site Location and History1 | | | 1.3 | Regulatory Requirements1 | | 2.0 | Sumi | mary of Investigation Activities2 | | | 2.1 | Confirmation Soil Sample Results3 | | | 2.2 | Fence Line Soil Sample Results4 | | | 2.3 | Water Way Soil Sample Results4 | | | 2.4 | Fence Material Sample Results5 | | 3.0 | Interi | im Removal Actions5 | | | 3.1 | Phase 1 Excavation Activities and Results5 | | | 3.2 | July 2001 Sampling Activities and Results5 | | | 3.3 | Phase 2 Excavation Activities and Results6 | | | 3.4 | Phase 3 Excavation Activities and Results7 | | | 3.5 | September 2001 Soil Samples (East of Spur 341)8 | | | 3.6 | September 2001 Soil Samples (West of Spur 341)9 | | 4.0 | Discu | ussion9 | | | 4.1 | Lead Concentrations in Soil10 | | | 4.2 | Zinc Concentrations in Soil11 | | 5.0 | Sum | mary and Conclusions11 | | 6.0 | Refe | rences13 | | Tabl | les | | | Fion | res | | Figures NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 11 of 1V | Table of Contents (Continued) | |-------------------------------| | Table of Continued) | Page - Appendix A Previous Investigations - Appendix B Soil Boring Logs - Appendix C Data Quality Summary Report/Analytical Results from December 2000 Investigation - Appendix D Data Quality Summary Report/Analytical Results from May-September 2001 Excavation Samples NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 111 of 1V #### List of Tables - | Table | Title | Follows Text | |-------|--|--------------| | 1-1 | Soil and Groundwater Background Inorganic Concentrations | | | 1-2 | TNRCC Risk Reduction Standard 2 Media-Specific Concentrations | | | 2-1 | Summary of Soil Analytical Results Compared to Background and MSCs | | | 2-2 | Summary of SPLP Results Compared to Background and MSCs | | | 3-1 | Summary of Soil Samples and Analyses During 2001 Excavation Activities | es | | 3-2 | Summary of 2001 Analytical Detections in Soil Compared to Background and MSCs | | | 3-3 | Summary of 2001 SPLP Analytical Detections in Soil Compared to Background and MSCs | | | 3-4 | Summary of September 2001 XRF Results | | #### List of Figures _____ 3-3 3-4 | Table | Title | Follows Text | |-------|--|--------------| | 1-1 | Aerospace Museum Site Location Map | | | 2-1 | Aerospace Museum Site, December 2000 Sample Locations | | | 3-1 | Phase 1 and 2 Excavation Limits and Phase 3 Preverification Sample Res | ults | | 3-2 | Results from Phase 2 Confirmation Samples | | Field Screening Results for September 2001 Soil Samples Results from Phase 3 Confirmation Samples NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page IV of IV #### List of Acronyms AFB Air Force Base AFCEE Air Force Center for Environmental Excellence AFP-4 Air Force Plant 4 AMS Aerospace Museum Site bgs below ground surface CMS corrective measures study COC contaminant of concern DPT direct-push technology ED energy dispersive EPA U.S. Environmental Protection Agency IRA interim remedial action IT IT Corporation Jacobs Engineering JRB Joint Reserve Base mg/kg milligrams per kilogram mg/L milligrams per liter MQL method quantitation limit MSC medium-specific concentration NAS Naval Air Station NFA no further action RRS Risk Reduction Standard SPLP synthetic precipitation leaching procedure TAC Texas Administrative Code TNRCC Texas Natural Resource Conservation Commission USAF U.S. Air Force UTL upper tolerance limit XRF x-ray fluorescence 8 #### 1.0 Introduction The Air Force Center for Environmental Excellence (AFCEE) contracted IT Corporation (IT) to perform additional sampling and analysis at the Aerospace Museum Site (AMS) at the Naval Air Station (NAS) Fort Worth Joint Reserve Base (JRB), formerly Carswell Air Force Base (AFB), Texas. This additional sampling was conducted to fill data gaps from previous investigations needed to achieve site closure under Texas Natural Resource Conservation Commission (TNRCC) Risk Reduction Standards (RRS) (30 Texas Administrative Code [TAC] 335, Subchapter Section 335.554) (TNRCC, 1996). Also, removal actions were completed by excavation and disposal of lead-contaminated soil. This report supports that this site can be closed under RRS 1. #### 1.1 Project Background NAS Fort Worth JRB is a parcel of the former Carswell AFB that is being transferred from the U.S. Air Force (USAF) to U.S. Navy management following the closure of Carswell AFB on September 30, 1993. To complete the transfer of the property, environmental investigations were required to identify potential contamination relating to USAF activities prior to September 30, 1993, and contaminated sites had to be remediated to concentrations that are protective of human health and the environment. #### 1.2 Site Location and History The AMS is located along Spur 341, west of the north-south primary instrument runway, south of Air Force Plant 4 (AFP-4), and adjacent to Farmers Branch Creek (Figure 1-1). The site is currently covered with grass and slopes gently from northwest to southeast. This 12.5-acre museum site has been used for display of various aircraft, vehicles, and storage equipment. A records search indicated that an asphalt batching plant was previously located at the site (Universe Technologies Inc., 2000). Also, a B-52 bomber was previously stored and dismantled at the site, resulting in small chips of aircraft being buried in the surface soil. Background information discussing previous environmental investigations and observations associated with the AMS is provided in Appendix A. #### 1.3 Regulatory Requirements Analytical data collected at the AMS were evaluated and compared to the TNRCC RRSs. The TNRCC RRSs (30 TAC 335, Subchapter S) specify a consistent risk management policy to NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 2 of 13 define what cleanup actions are necessary to protect human health and the environment. The RRSs define the following three tiers of cleanup standards: - RRS 1 requires cleanup to laboratory nondetectable levels or site-specific levels. Cleanup at RRS 1 levels is commonly referred to as "clean closure." Deed certification on the property and post-closure care are not required under this standard. RRS 1 does not require cleanup if no hazardous chemicals are detected above background levels - RRS 2 requires cleanup to default health-based levels such that any substantial threat to human health or the environment is reduced to acceptable levels. These cleanup standards are termed medium-specific concentrations (MSC). RRS 2 closure allows for delineation of contamination in lieu of cleanup for contaminant concentrations that do not exceed MSCs. Examples of MSCs for selected chemicals are tabulated in the regulations (30 TAC Section 336.568, Appendix II), and equations are prescribed for use in calculating MSCs for chemicals not listed. Deed certification on the property is required. - RRS 3 requires a site-specific baseline risk assessment to define alternative cleanup levels based on health effects. Cleanup under RRS 3 standards may also require performing a corrective measures study to evaluate appropriate cleanup alternatives. Deed certification and post-closure care are required for cleanup under this standard. The results for soil samples collected for analysis of inorganic compounds were compared to the approved Base-specific background upper tolerance limits (UTL) as presented in the final Basewide background study (Jacobs Engineering [Jacobs], 1998). Table 1-1 presents a summary of Jacobs background UTLs for constituents of concern at the AMS at NAS Fort Worth JRB. Analytical results of samples analyzed for organic compounds were compared to method quantitation limits (MQL) determined for a particular analytical method for a given constituent. Additionally, all analytical results were compared to available MSCs to determine whether the detected contaminants pose a threat to shallow groundwater. Table 1-2 presents a summary of MSCs used for this project. #### 2.0 Summary of Investigation Activities_ In December 2000, IT collected surface and subsurface soil samples from 18 locations (36 samples total), per the approved work plan (Universe Technologies Inc., 2000). Soil samples were analyzed for zinc, lead, silver, and/or nickel by U.S. Environmental Protection Agency (EPA) Method SW6010B and for benzo(a)pyrene by EPA Method SW8310. In addition to soil NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 3 of 13 samples, two samples of the metal strips from the fence that lines the western portion of the site were submitted for zinc analysis. No groundwater samples were collected. The sample locations were selected to confirm the nature and extent of zinc, lead, silver, nickel, and benzo(a)pyrene contamination; to determine the potential of contaminants exceeding MSCs to leach into groundwater, using the synthetic precipitate leaching procedure (SPLP); and to define the nature and extent of zinc contamination along the
fence line. Figure 2-1 shows the locations of soil samples collected during the December 2000 investigation. Soil samples were collected using a hand auger according to procedures in the AFCEE Model Field Sampling Plan (AFCEE, 1998). Soil boring logs are provided in Appendix B. #### 2.1 Confirmation Soil Sample Results (December 2000) Confirmation samples were collected in December 2000 from nine original sampling locations (Figure 2-1). At each location, soil samples were obtained at two intervals. surface (0 to 2 feet) and subsurface (2 to 4 feet). Samples were analyzed for zinc, lead, nickel and/or silver by EPA Method SW6010 and for benzo(a)pyrene by Method SW8260. Table 2-1 presents the analytical results from soil samples collected during the investigation compared to Basewide background concentrations for inorganic compounds and to the MQL for benzo(a)pyrene. A summary of SPLP results is shown in Table 2-2. The analytical results are provided in the data quality summary report included as Appendix C. The following paragraphs discuss these confirmation soil samples. Surface Soil. Zinc was detected at concentrations above background (38.8 milligrams per kilogram [mg/kg]) in five of seven surface soil samples. However, all zinc detections were below the MSC for zinc (3,100 mg/kg). The lead concentration detected in the surface soil sample from OT3848SAC was below background. The nickel concentration detected in the surface soil sample from S62C was also below background. Benzo(a)pyrene and silver were not detected in the sample from OT3801SAC Lead (171 mg/kg) was detected above both background (30.97 mg/kg) and the MSC (1.5 mg/kg) in the sample collected from S55C. The lead concentration detected by the SPLP analysis (0.0714 milligrams per liter [mg/L]) exceeded the MSC for lead in groundwater (0.015 mg/L). The field duplicate results for S55C samples confirmed the elevated concentrations. Therefore, excavation of contaminated soils in this area was required to achieve closure under RRS 2. A removal action was therefore undertaken, as discussed in Section 3.0. **Subsurface Soil.** Zinc concentrations were at or below background (31.3 mg/kg) in all seven subsurface soil samples, and all concentrations were below the RRS 2 value for zinc of 3,100 mg/kg. The lead concentration detected in the subsurface sample from OT3848SAC was below background. The nickel concentration detected in the subsurface sample from S62C was also below background. Benzo(a)pyrene and silver were not detected in the subsurface soil sample from OT3801SAC Lead was detected in soil sample S55C and its field duplicate at concentrations (13 6 mg/kg and 17.1 mg/kg [field duplicate]) slightly above the background (12.66 mg/kg) and above the MSC (1.5 mg/kg) for lead. The SPLP concentration detected from sample location S55C (0.00761 mg/L) was below the MSC for lead in groundwater (0.015 mg/L), but the SPLP concentration detected in the field duplicate at S55C (0.0385 mg/L) exceeded the MSC. #### 2.2 Fence Line Soil Sample Results Soil samples were collected from four locations along the fence line in December 2000 and analyzed for zinc by EPA Method SW6010B. Soil samples were taken at two intervals: surface (0 to 2 feet) and subsurface (2 to 4 feet). Zinc concentrations were detected above background (38.8 mg/kg) in three of four surface soil samples, but all concentrations were below the MSC for zinc (3,100 mg/kg). Zinc concentrations in the subsurface soils were detected above background (31.3 mg/kg) in two of four samples; all concentrations were below the MSC (Table 2-1). #### 2.3 Waterway Soil Sample Results Soil samples were obtained from four locations in December 2000 along the waterway that runs parallel to Spur 341. Samples were obtained from the surface (0 to 2 feet) and subsurface (2 to 4 feet) and analyzed for zinc by EPA Method SW6010B. Zinc concentrations in all four surface soil samples were below background (Table 2-1). Zinc concentrations in the subsurface soil samples were all below background concentrations, except at location S55W. However, the zinc concentration at this location (44.8 mg/kg) was below the MSC. NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 5 of 13 #### 2.4 Fence Material Sample Results Two samples of the metal strips from the fence were collected in December 2000 for analysis by EPA Method SW6010B. Zinc was detected in the metal strips at concentrations of 17,100 mg/kg and 27,100 mg/kg (Table 2-1). #### 3.0 Interim Removal Actions Soil excavation activities were completed between May and September 2001 to remove lead concentrations detected above background at sample location S55C during the December 2000 sampling event. Table 3-1 summarizes the soil samples collected during the excavation activities, and Table 3-2 presents the analytical results for lead concentrations detected in these samples compared to background and the MSC. Results from SPLP analyses are presented in Table 3-3. The data quality summary report for analytical samples collected during the excavation activities is provided in Appendix D. The following sections detail the excavation and sampling activities completed at the AMS between May and September 2001. #### 3.1 Phase 1 Excavation Activities and Results Removal actions were taken in May 2001 on a 5-foot square centered on the coordinates of sample location S55C. The extent of the initial excavation is shown in Figure 3-1. The 5-foot square was excavated to a depth of approximately 3 feet below ground surface (bgs), which produced approximately 3 cubic yards of soil for disposal. Confirmation samples were collected from the four side walls and the floor of the excavation and analyzed for lead using EPA Method 6010. As shown in Table 3-2, the lead concentrations detected in the May 2001 confirmation soil samples collected from the north wall (248 mg/kg), west wall (105 mg/kg), south wall (146 mg/kg), east wall (107 mg/kg) and floor (76.7 mg/kg) of the excavation exceeded the background concentration for lead in surface soil (30.97 mg/kg). SPLP analysis (Table 3-3) showed that lead concentrations detected in the west wall (0.026 mg/L), south wall (0.016 mg/L), and floor (0.047 mg/L) were above the MSC for groundwater (0.015 mg/L). #### 3.2 July 2001 Sampling Activities and Results Direct-push technology (DPT) soil samples were collected on July 18, 2001, in an attempt to delineate the extent of lead contamination surrounding sample location S55C. Soil samples were collected from 12 DPT borings, as shown in Figure 3-1 and Table 3-1. The soil samples were NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 6 of 13 collected at depths of 1.5 to 2 feet bgs, 4.5 to 5 feet bgs, and 7.5 to 8 feet bgs to determine the horizontal and vertical extent of elevated lead concentrations surrounding S55C. As shown in Table 3-2, lead concentrations were detected above background (30.97 mg/kg) at a depth of 1.5 to 2 feet bgs in the DPT soil samples collected from locations S55C-E1, S55C-E2, S55C-E3, S55C-N1, S55C-N2, and S55C-S1. All samples collected below 2 feet bgs in these DPT soil samples were either below the background lead concentration for subsurface soil (12.66 mg/kg) or just above the background concentration (e.g., S55-E2 [16.1 mg/kg at 4.5 to 5 feet bgs] and S55C-N1 [13.5 mg/kg at 4.5 to 5 feet bgs]). The lack of elevated lead concentrations above background in the subsurface soil samples indicated that elevated lead concentrations were confined to the upper 2 to 3 feet of soil. Based upon the results from the July 18, 2001 DPT soil samples, an additional 5 DPT borings were sampled on July 23, 2001, to further delineate the elevated lead concentrations. Because the results from the July 18, 2001 subsurface samples indicated that the elevated lead concentrations were confined to the upper 2 feet of soil, soil samples were collected from 1.5 to 2 feet bgs at the 5 DPT borings. The lead concentrations detected in these soil samples were above background (Table 3-2), except for S55C-NE1, which is located the farthest distance from the road (Spur 341). #### 3.3 Phase 2 Excavation Activities and Results The Phase 2 excavation activities were completed on July 26, 2001. The excavation limits, shown in Figure 3-1, were based upon the lead concentrations detected in the July 18 DPT soil samples, except for the north wall area. The limit for the north wall excavation was 10 feet beyond sample S55C-N3, which contained lead significantly above background in the sample from July 18, 2001. Soil was excavated to a depth of 3 feet bgs within the limits of the excavation. Approximately 150 cubic yards of soil were removed during the Phase 2 excavation. Following the Phase 2 excavation, a total of 8 confirmation soil samples were collected from the walls and floor of the excavation (Figure 3-2). Table 3-1 list these confirmation soil samples and the corresponding sample depths. The lead concentrations detected in the Phase 2 confirmation samples are shown in Table 3-2. Lead concentrations detected in the confirmation floor samples (V8 and V9) were at or below background. However, lead concentrations detected in all of the wall samples (between 0 to 2 feet bgs) were significantly above background. NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 7 of 13 The analytical results from the July 23, 2001 soil samples (N4, N5, N6, NE1, and NW1) were received after completion of the Phase 2 excavation and sampling activities. The results from the July 23, 2001 soil samples (Table 3-2) were above the background concentration for lead, which suggested that the lead concentrations in the eight confirmation samples collected from the walls and floor of the Phase 2 excavation were above background. Therefore, IT collected additional soil samples to delineate the northern extent of lead concentrations for the excavation centered around S55C. Hand augers were used to
collect soil samples from 0 to 2 feet bgs at nine locations on July 26, 2001. As shown in Figure 3-1, five soil samples (N7 through N11) were collected at 15-foot intervals to the north from July 18 sample location N6. The remaining four soil samples (NE2, NE3, NW2, and NW3) were collected to delineate lead concentrations at the northeast and northwest portions of the excavation's north boundary. The lead concentrations detected in the July 26, 2001 soil samples are shown in Table 3-2. The lead concentration detected at location N7 (94.3 mg/kg) exceeded background. Lead concentrations detected in the remaining eight samples (N8 through N11, NE2, NE3, NW2 and NW3) were below background in surface soils. #### 3.4 Phase 3 Excavation Activities and Results The results of the Phase 2 confirmation samples indicated that lead concentrations were above background along all four sidewalls of the excavation (Samples V1-V7). Therefore, IT performed the Phase 3 excavation to remove lead-contaminated soil that was defined using the lead results from the July delineation samples. The Phase 3 excavation activities were completed during the period of August 20-23, 2001. Approximately 320 cubic yards of soil were excavated during the Phase 3 activities. Figure 3-3 displays the extent of the Phase 3 excavation, along with field screening and laboratory results for soil samples collected during and after the excavation. An energy dispersive (ED) x-ray fluorescent (XRF) instrument was used to provide on-site screening level lead concentrations during the Phase 3 excavation. Once field screening results indicated that lead concentrations were below background, confirmation soil samples were collected every 20 feet from each wall of the Phase 3 excavation for analysis of lead by EPA Method 6010B at an off-site laboratory. The following paragraphs discuss the procedure used for delineating lead concentrations during the Phase 3 excavation. NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 8 of 13 The lead concentrations detected by the XRF instrument were used to define the extent of lead concentrations above background and the limits of the Phase 3 excavation. For example, along the south wall of the excavation, a trench 5 feet wide and 27 feet long was excavated to a depth of 3 feet bgs, and soil samples were analyzed for lead using the XRF instrument. Because the screening level lead concentrations detected by the XRF were above background, a second trench of the same dimensions was excavated, and additional field screening soil samples were collected. The XRF results from the southwest wall were below background; therefore, a confirmation soil sample (VS1) was collected for off-site analysis. Because the lead concentration detected in the field screening sample from the southeastern wall was above background, another trench (5 feet by 5 feet) was excavated; the XRF result for lead for this southeastern wall was below background. Therefore, a confirmation sample (VS2) was collected from the southeastern wall for off-site analysis. The excavations along the eastern and northern walls followed a similar strategy. The Phase 3 excavation along the west wall was influenced by the presence of a security fence and the proximity to underground utilities (including fiber optic cable). The fence was removed so that a trench 1 foot wide by 86 feet long could be excavated to a depth of 3 feet bgs. The presence of the underground phone cable prohibited the excavation from extending farther west. Five confirmation soil samples (VW1 through VW5) were collected from the west wall and submitted for off-site analysis of lead. The results of the Phase 3 confirmation samples collected on August 21, 2001, are presented in Table 3-2. The lead concentrations detected in confirmation soil samples from the south wall (VS1 and VS2), east wall (VE1, VE2, VE3, and VE4), and north wall (VN1 and VN2) were below background. The lead concentration detected in the composite soil sample collected from the floor of the northern portion of the Phase 3 excavation (VF1) was also below background. However, the five confirmation soil samples collected along the west wall of the excavation (near Spur 341) (VW1 through VW5) contained lead concentrations above background. #### 3.5 September 2001 Soil Samples (East of Spur 341) On September 6, 2001, IT collected soil samples from 16 additional locations west of the fence line. The soil samples were collected in a series of four rows (FL, W1, W2, and W3) at depths of 12 to 18 inches bgs. The field screening and laboratory results for these soil samples are shown NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 9 of 13 on Figures 3-4 and 3-5, respectively. Field screening results using the XRF instrument are presented in Table 3-4. The analytical results of the September 6, 2001 hand-augered soil samples are presented in Table 3-2 and shown in Figure 3-5. Fourteen of the 16 soil samples submitted for laboratory analysis contained lead concentrations above background for surface soil. As shown in Figure 3-5, the lead concentrations detected in the September 6, 2001 soil samples appear to be randomly distributed, and no clear source of lead was identified in these samples. #### 3.6 September 2001 Soil Samples (West of Spur 341) The extent of lead concentrations exceeding background in surface soils near Spur 341 was not defined by confirmation samples collected from three phases of soil excavation or from delineation samples collected near Spur 341. The presence of elevated lead concentrations near Spur 341 suggested that exhaust emissions from cars and trucks using leaded gasoline over a 40-year period may have distributed lead particles along the roadway. Therefore, IT collected three soil samples to the west of Spur 341 on September 21, 2001, to provide evidence that the elevated lead concentrations found in surface soil to the east of Spur 341 were likely the result of anthropogenic sources and not related to Air Force activities at the AMS. The three soil samples were collected from 2 feet bgs using a hand auger and were submitted to the laboratory for analysis of lead using EPA Method 6010B. The analytical results of the soil samples collected on September 21, 2001, are presented on Table 3-1 and shown in Figure 3-5. The lead concentrations detected in surface soils collected west of Spur 341 ranged from 53.8 to 141 mg/kg, which exceed background. The results from these samples provides evidence that the lead concentrations detected in surface soil along Spur 341 are from anthropogenic sources and not related to Air Force activities at the AMS. #### The following sections discuss lead and zinc concentrations that were detected above background at the AMS. NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 10 of 13 #### 4.1 Lead Concentrations in Soil The presence of lead concentrations above background in surface soils at the AMS appears to be the result of emissions of leaded gasoline from cars and trucks that traveled through the entrance gate to AFP-4 over 40 years of operation. Several studies have been performed indicating that lead concentrations in surface soils along heavily trafficked roads are typically higher than normal background levels. According to the EPA Technical Summary, Volume I, A Summary of Studies Addressing the Source of Soil-Lead, (EPA, 1998) four general types of supporting evidence have been used in the literature in examining leaded gasoline as a source of lead in soil: 1) distance from the roadway, 2) association with ambient air levels, 3) association with traffic volume, and 4) community area pattern. Approximately 40 percent of lead emitted as vehicular exhaust is in sufficiently large particles to be deposited near the roadway (EPA, 1998). The EPA Technical Summary provides many examples to demonstrate the relationship of high lead concentrations and proximity to roadways and/or volume of traffic. Specific examples of concentrations near roadways compared to areas not near roadways are provided in this report, and excerpts include: A study in Corpus Christi, Texas, revealed that the arithmetic mean of lead concentrations near highways (379 samples) was 250 mg/kg, while the arithmetic mean lead concentration near parks (94 samples) was 55 mg/kg, and the arithmetic mean lead concentration near schools (12 samples) was 57 mg/kg. Another study in Beltsville, Maryland, demonstrated that lead concentrations decrease as distance from the highway increases. Specifically, at a distance of 8 meters from the highway, concentrations on either side of the road were 108.8 mg/kg and 87.37 mg/kg. At a distance of 25 meters from the road, lead concentrations decreased to 37.42 mg/kg and 25.42 mg/kg; and, at a distance of 50 meters from the road, lead concentrations again decreased to 14.16 mg/kg and 19.2 mg/kg. AFP-4 has operated continuously since April 1942 and currently employs over 12,000 people. Spur 341 has been used as the southern entrance to AFP-4 since 1942. AMS is located approximately 1,000 feet from AFP-4's southern entrance gate. Consequently, exhaust emissions from cars and trucks using leaded gasoline over a 40-year period are most likely an anthropogenic source of lead found along Spur 341 at the AMS. Lead was eliminated from gasoline in the early 1980s. Results of surficial lead sampling at the western portion of the AMS NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 11 of 13 have shown a pattern of elevated lead concentrations near roadways, with concentrations dropping off as the distance from the roadway increased. A close examination of the locations of soil samples collected in the basewide background study of NAS Fort Worth JRB (Jacobs, 1998) reveals that all the samples collected for the basewide background study were collected well away from historical primary roadways, and many were collected at school and park
settings. This collection pattern has introduced a low bias for surface background lead concentrations at NAS Fort Worth JRB, especially where lead is detected above background near roadways that have been historically exposed to elevated lead emissions (HydroGeoLogic, 2000). #### 4.2 Zinc Concentrations in Soil Zinc concentrations were detected above background at several surface sample locations at the AMS. The maximum zinc concentration detected in surface soil was 126 mg/kg at sample location S52C. The background concentration for zinc in surface soil at NAS Fort Worth JRB is 38.8 mg/kg. All zinc concentrations detected at the AMS are well below the MSC for zinc in soil (3,100 mg/kg). Zinc is used in the form of zinc oxide during the manufacture of automobile tires, as an accelerator in the vulcanization process. Increased vehicular usage has been shown to elevate zinc concentrations detected in runoff from population centers (Callender and Rice, 2000). Considering the large amount of vehicular traffic along Spur 341 and that runoff from Spur 341 flows east across the AMS into the aqueduct, the elevated zinc concentrations found in surface soil are likely from an anthropogenic source and not related to activities at the AMS. The galvanized steel fence at the western edge of the AMS is a second potential anthropogenic source of zinc concentrations. As presented in Section 2.4, zinc concentrations of 17,100 and 27,100 mg/kg were detected in samples from the fence material. #### 5.0 Summary and Conclusions In December 2000, IT conducted a soil sampling event that included collecting and analyzing soil samples from 18 locations at the AMS at NAS Fort Worth JRB, formerly Carswell AFB. Surface and subsurface soil samples were collected at nine locations sampled to confirm concentrations of zinc, lead, silver, nickel, and benzo(a)pyrene that were detected during NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 12 of 13 previous investigations. The analytical results showed that lead and zinc were the only constituents that were detected above background concentrations. However, as discussed in Section 4.2, the zinc concentrations detected in surface soil at the AMS are likely the result of an anthropogenic source. Zinc is found in automobile tires, and runoff from Spur 341 is likely to have caused the elevated zinc concentrations detected in surface soil at the AMS. Zinc was also found at high concentrations in the galvanized steel fence running along the western border of the AMS. The maximum zinc concentration detected in soil at the AMS, 126 mg/kg, is well below the MSC (3,100 mg/kg). Lead concentrations detected in the December 2000 soil samples at location S55C were above the background (30.97 mg/kg) and MSC (1.5 mg/kg). Therefore, soil excavations were completed in May, July, and August 2001 to remove lead concentrations centered around sample location S55C. Between excavation events, hand-auger and DPT soil samples were collected to delineate the extent of lead concentrations above background, between excavation events. Soil samples collected during the excavation activities indicated that elevated lead concentrations were limited to the upper 2 to 3 feet of soil. Excavation activities continued until lead concentrations detected in the north, south and east sidewalls were below background. However, the excavation of the west sidewall was halted, due to the presence of a fiber optic cable running along Spur 341. Hand-auger soil samples were collected between the west wall of the AMS excavation and Spur 341 in September 2001. The results from these soil samples indicated that lead concentrations were above background. Soil samples were then collected on the west side of Spur 341, which also showed lead concentrations above background. As discussed in Section 4.1, the lead concentrations detected in surface soil at the AMS are likely the result of an anthropogenic source, the emissions from leaded-gasoline-burning vehicles that traveled on Spur 341 through the entrance to AFP-4. The analytical results from the soil samples collected by IT indicate that the AMS meets the criteria for closure under RRS 1 for the following reasons: - Benzo(a)pyrene and silver were not detected in confirmation soil samples collected at former location OT3801SAC. - Nickel was detected at concentrations below background in soil samples collected at former location S62C. NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page 13 of 13 • Lead and zinc concentrations exceeding background at the site are the result of anthropogenic sources (i.e., vehicle exhaust fumes for lead, runoff containing tire residues for zinc). Based upon this information, no further action (NFA) is warranted for the subject site, and the AMS is recommended for closure under RRS 1. | 6.0 References | |----------------| | 6 N Patarancas | Callender, Edward and Karen Rice, 2000, *The Urban Environmental Gradient: Anthropogenic Influences on the Spatial and Temporal Distribution of Lead and Zinc in Sediments*, Environmental Science and Technology, Volume 34, No. 2. HydroGeoLogic, Inc., 2000, Draft RCRA Facility Investigation, Solid Waste Management Units 22, 23, 24, and 25, NAS Fort Worth JRB, Texas: Volume I, September. Jacobs Engineering (Jacobs), 1998, Air Force Center for Environmental Excellence, Naval Air Station Fort Worth Joint Reserve Base, Final Basewide Background Study. Texas Natural Resources Conservation Commission (TNRCC), 1996, Texas Administrative Code, Environmental Quality, Chapter 335 Industrial Solid Waste and Municipal Hazardous Waste, Risk Reduction Standards. Universe Technologies, Inc., 2000, Letter Work Plan for Additional Sampling at the Aerospace Museum site, Naval Air Station Fort Worth, Joint Reserve Base, Former Carswell Air Force Base, Texas, August. U.S. Air Force Center for Environmental Excellence (AFCEE), 1998, Air Force Center for Environmental Excellence Field Sampling Plan, Version 3.0, March. U.S. Environmental Protection Agency (EPA), 1998, A Summary of Studies Addressing the source of Soil-Lead, Volume 1: Technical Summary, EPA747-R-98-001A. NAS Fort Worth JRB, Texas AMS Closure Report September 2001 **TABLES** Table 1-1 #### Soil and Groundwater Background Inorganic Concentrations Aerospace Museum Site NAS Fort Worth JRB, Texas | Analyte | Surface Soils
UTL
(mg/kg) | Subsurface Soils
UTL
(mg/kg) | Groundwater
UTL
(mg/L) | |---------|---------------------------------|------------------------------------|------------------------------| | LEAD | 30.97 | 12.66 | ND at 0.0016 | | NICKEL | 14 6 | 19 76 | 0 0204 | | SILVER | 0 213 | 0 128 | 0 0002 | | ZINC | 38 8 | 31 3 | 0 118 | #### Source Jacobs Engineering Group, Inc., 1998, NAS Fort Worth JRB, Texas (Formerly Carswell AFB, Texas), Final Basewide Background Study, Volume I mg/kg = Milligrams per kilogram mg/L = Milligrams per liter ND = Not detected UTL = Upper tolerance limit Table 1-2 #### TNRCC Risk Reduction Standard 2 Medium-Specific Concentrations Aerospace Museum Site NAS Fort Worth JRB, Texas | Parameter | Surface
Soil ^a MSC
(mg/kg) | Subsurface
Soil ^b MSC
(mg/kg) | Groundwater ^c MSC
(mg/L) | |----------------|---|--|--| | LEAD | 15 | 15 | 0 015 | | NICKEL | 200 | 200 | 2 | | SILVER | 51 | 51 | 0.51 | | ZINC | 3100 | 3100 | 31 | | BENZO(A)PYRENE | 0 02 | 0 02 | 0 0002 | #### Notes Reference TNRCC Risk Reduction Standards, TNRCC, 1993, "Final Standards Chapter 335, Subchapter S. Risk Reduction Standards," Texas Register 18 3842-3872 MSC - Medium-specific concentration mg/kg - Milligrams per kilogram mg/L - Milligrams per liter TNRCC - Teaxs Natural Resource Conservation Commission Table 2-1 ## Summary of Soil Analytical Results Compared to Background and MSCs Aerospace Museum Site NAS Fort Worth JRB, Texas (Page 1 of 3) | | | | | | | Reporting | | | | Background | Does Result | | Does Result | |-----------|------------|----------|------------------------------------|-------------------|----------------|------------------|-------------------|------------
--|------------|------------------|-------------|-----------------| | Location | Sample No. | Date | Start Depth End Depth
(FT) (FT) | end Depth
(FT) | Parameter | Limit
(ma/ka) | Result
(mg/kg) | Laboratory | Validation | UTL 1 | Support Closure | TNRCC MSC 2 | Support Closure | | FENCE1 | BM0001 | 5-Dec-00 | | | Ziec | 66 | (Sussession) | i i | E COMINICAL DE LA | (mg/kg) | Under KKS17 | (mg/kg) | Under RRS27 | | | | | İ | l | 7 IIIC | 6 | 1/100 | Σ | 2 | 38 8 | o <mark>N</mark> | 3 10E+03 | °N | | FENCE2 | BM0002 | 5-Dec-00 | ı | I | Zinc | 100 | 27100 | | | 388 | o _N | 3 10E+03 | o
Z | | OT3801SAC | BM0021 | 5-Dec-00 | 0 | 2 | Benzo(a)pyrene | 0 012 | 0 012 | 5 | = | 1 20E.02 | X | 2 00E | Š | | OT3801SAC | BM0021 | 5-Dec-00 | 0 | 7 | Silver | 12 | 12 | · ⊃ |)) | 0.213 | Yes | 5 10E+01 | ζ Z | | OT3801SAC | BM0022 | 5-Dec-00 | 6 | ₹ | Renzo(e)myrene | 0 | 2 | Ξ | = | !
! | ; | | | | OT3801SAC | BM0022 | 5-Dec-00 | 10 | 1 4 | Salvar | 2.5 | 200 | י כ | ɔ : | 1 20E-02 | Yes | 2 00E-02 | N
N | | | | | 1 | ٠ | ה
ה | 2 | 8 | L | > | 0 128 | Yes | 5 10E+01 | ΑN | | OT3848SAC | BM0019 | 5-Dec-00 | 0 | 7 | Lead | 12 | 202 | | 2 | 30.97 | Yes | 1 50E+00 | ΑN | | OT3848SAC | BM0020 | 5-Dec-00 | 2 | 4 | Lead | 11 | 66 9 | | λi | 12 66 | Yes | 1 50E+00 | ٧ | | S52C | BM0003 | 5-Dec-00 | 0 | 2 | Zinc | 13 | 126 | | 2 | 388 | Ŷ. | 3 10F+03 | Yes | | S52C | BM0004 | 5-Dec-00 | 7 | 4 | Zinc | 12 | 30.6 | | - | | | , 6
, 7 | 3 3 | | S52F | BAA0023 | 7.000 | c | r | Ļ | | ; | | , | •
• | 8 | 50-700 | ¥. | | 200 | 2000 | 00-38G-c | 5 | N | Zinc | 12 | 47 | | ۸ | 38.8 | S
S | 3 10E+03 | Yes | | S52F | BM0024 | 5-Dec-00 | 2 | 4 | Zinc | 12 | 33 7 | | 2 | 313 | 0
N | 3 10E+03 | Yes | | S52W | BM0031 | 5-Dec-00 | 0 | 7 | Zinc | - | 37 4 | | 7 | 388 | Yes | 3 10E+03 | Ą | | S52W | BM0032 | 5-Dec-00 | 0 | 7 | Zinc | 13 | 37.4 | | ٥. | 38 8 | Yes | 3 10E+03 | Ϋ́ | | S52W | BM0033 | 5-Dec-00 | 2 | 4 | Zinc | = | 30 1 | | 7 | 313 | Yes | 3 10E+03 | A
A | | S52W | BM0034 | 5-Dec-00 | 2 | 4 | Zinc | 13 | 33 | | 2 | 313 | o
N | 3 10E+03 | Yes | | S53C | BM0005 | 5-Dec-00 | 0 | 8 | Zinc | 12 | 117 | | Š | 388 | N _O | 3 10E+03 | Yes | | Seac | BM0006 | 5-Dec-00 | 2 | 4 | Zinc | 12 | 27 9 | | 2 | 313 | Yes | 3 10E+03 | NA | | S53F | BM0025 | 5-Dec-00 | 0 | 7 | Zınc | 12 | 185 | | 5 | 388 | o
Z | 3 10E+03 | Yes | | S53F | BM0026 | 5-Dec-00 | 7 | 4 | Zinc | | 25 2 | | λι | 313 | Yes | 3 10E+03 | NA | | S53W | BM0035 | 5-Dec-00 | 0 | 7 | Zinc | 12 | 22 2 | | 2 | 38.8 | Yes | 3 10E+03 | W | | S53W | BM0036 | 5-Dec-00 | 7 | 4 | Zinc | - | 12 1 | | 2 | 313 | Yes | 3 10E+03 | WA | Table 2-1 # Summary of Soil Analytical Results Compared to Background and MSCs Aerospace Museum Site NAS Fort Worth JRB, Texas (Page 2 of 3) | | | 4 | | | Reporting | | | | Sackground | Background Does Result | : | Does Result | |------------|----------|--------------------------------------|-------------------|-----------|------------------|-------------------|-------------------------|-------------------------|------------------|--------------------------------|------------------------|--------------------------------| | Sample No. | Date | Start Deptif End Deptif
(FT) (FT) | End Depth
(FT) | Parameter | Limit
(mg/kg) | Result
(mg/kg) | Laboratory
Qualifler | Validation
Qualifier | UTL '
(mg/kg) | Support Closure
Under RRS17 | TNRCC MSC 2
(mg/kg) | Support Closure
Under RRS2? | | BM0007 | 5-Dec-00 | 0 | 2 | Zinc | 12 | 64.5 | | ΛU | 388 | No. | 3 10E+03 | Yes | | BM0008 | 5-Dec-00 | 7 | 4 | Zinc | 12 | 296 | | 2 | 313 | Yes | 3 10E+03 | Ą | | BM0027 | 5-Dec-00 | 0 | 2 | Zinc | 12 | 356 | Σ | יר | 388 | Yes | 3 10E+03 | ΑN | | BM0028 | 5-Dec-00 | 7 | 4 | Zinc | 12 | 29 3 | | ٤ | 313 | Yes | 3 10E+03 | Ą | | BM0037 | 5-Dec-00 | 0 | 2 | Zinc | - | 258 | | \$ | 388 | Yes | 3 10E+03 | Ą | | BM0038 | 5-Dec-00 | 7 | 4 | Zinc | 12 | 30 6 | | 2 | 313 | Yes | 3 10E+03 | Ą | | BM0009 | 5-Dec-00 | 0 | 2 | Lead | 12 | 171 | | | 30 97 | Q | 4 505,00 | 2 | | BM0009 | 5-Dec-00 | 0 | 2 | Zinc | 12 | 109 | | 7 | 38.8 | S S | 3 10E+03 | Yes | | BM0010 | 5-Dec-00 | 0 | 2 | Lead | 12 | 206 | | 2 | 30.97 | Ž | 1.505+00 | Z | | BM0010 | 5-Dec-00 | 0 | 2 | Zinc | 12 | 96.2 | | 2 | 388 | O N | 3 10E+03 | Yes | | BM0011 | 5-Dec-00 | 2 | 4 | Lead | 12 | 136 | | | 12 66 | Š | 1 50E+00 | Z | | BM0011 | 9-Dec-00 | 2 | 4 | Zinc | 12 | 212 | | ٦, | 313 | Yes | 3 10E+03 | Ą | | BM0012 | 5-Dec-00 | 8 | 4 | Lead | 12 | 17.1 | | 2 | 12 66 | S
S | 1 50E+00 | o
Z | | BM0012 | 5-Dec-00 | 2 | 4 | Zinc | 12 | 287 | | ۸۱ | 313 | Yes | 3 10E+03 | ¥ | | BM0029 | 9-Dec-00 | 0 | 2 | Zinc | - | 848 | | 2 | 38 8 | N
O | 3 10E+03 | Yes | | BM0030 | 5-Dec-00 | 2 | 4 | Zinc | - | 35.7 | 1 | 2 | 313 | o
N | 3 10E+03 | Yes | | BM0039 | 5-Dec-00 | 0 | 2 | Zinc | 12 | 28 5 | | 2 | 388 | Yes | 3 10E+03 | Ą | | BM0040 | 5-Dec-00 | 8 | 4 | Zinc | 12 | 448 | | 2 | 313 | o
N | 3 10E+03 | Yes | | BM0013 | 5-Dec-00 | 0 | 2 | Zinc | 12 | 333 | | 2 | 38.8 | Yes | 3 10E+03 | Ą | | BM0014 | 5-Dec-00 | 7 | 4 | Zinc | 1, | 21 | | 2 | 31 3 | Yes | 3 10E+03 | A | | BM0015 | 5-Dec-00 | 0 | 7 | Zinc | = | 33 9 | | 2 | 388 | Yes | 3 10E+03 | Ā | | BM0016 | 5-Dec-00 | 2 | 4 | Zinc | 12 | 22 | | 'n | 313 | Yes | 3 10E+03 | ٧ | | | | | | | | | | | | | | | ## Summary of Soil Analytical Results Compared to Background and MSCs NAS Fort Worth JRB, Texas Aerospace Museum Site (Page 3 of 3) | | | | | | | Reporting | | | | Background | Does Resuit | | Does Resuft | |----------|------------|----------|------------------------------|-----------|-----------|-----------|------|------------------------------|------------|------------|-----------------|-------------|-----------------| | | | Sample | Sample Start Depth End Depth | End Depth | | Limit | | Result Laboratory Validation | Validation | -
15 | Support Closure | TNRCC MSC 2 | Support Closure | | Location | Sample No. | Date | (F) | (FT) | Parameter | (mg/kg) | - 1 | (mg/kg) Qualifier Qualifier | Qualifier | (mg/kg) | Under RRS17 | (mg/kg) | Under RRS2? | | Sezc | BM0017 | 5-Dec-00 | 0 | 2 | Nicke | 2.3 | 6.56 | | 2 | 14.6 | Yes | 2 00F+02 | ΨZ | | Se2C | BM0017 | 5-Dec-00 | 0 | 2 | Zinc | 12 | 63 6 | | 2 | 388 | S S | 3 10E+03 | Yes | | S62C | BM0018 | 5-Dec-00 | 2 | 4 | Nickel | 2 4 | 5 | | 2 | 19 76 | Yes | 2 00E+02 | Ą | | S62C | BM0018 | 5-Dec-00 | 2 | 4 | Zinc | 12 | 32 1 | | 2 | 313 | 2 | 3 10E+03 | Yes | MSC = Medium Specific Concentration NA = not applicable RRS1 = Risk Reduction Standard 1 RRS2 = Risk Reduction Standard 2 TNRCC = Texas Natural Resources Conservation Commission UTL = Upper Tolerance Limit Footnotes 'UTLs denved from Final Draff Basewide Background Study, Jacobs Engineering, 1998 ² TNRCC, 1999, "Updated Examples of Standard No. 2, Appendix It Medium-Specific Concentrations (MSCs) - Industrial Setting", July 14 Laboratory Qualifler Definitions = The analyte was positively identified U = The analyte was analyzed for, but not detected. The associated numerical value is at or below the MDL F = The analyte was positively identified but the associated numerical value is below the reporting limit J = The analyte is present, but reported value may not be accurate or precise nv = not validated Table 2-2 Summary of SPLP Results Compared to Background and MSCs Aerospace Museum Site NAS Fort Worth JRB, Texas (Page 1 of 3) | | II | | | | | | | | | | | | | | | | (| 869 | |--|--------------------------|----------------|----------------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------| | Does Result
Support Closure
Under RRS27 | A A | Y S | ž o | Yes | Yes | Ϋ́ | Yes | Ϋ́ | Yes | Yes | Yes | Yes | NA | Ϋ́ | Yes | Ϋ́ | Ϋ́ | NA | | TNRCC MSC ²
(mg/L) | 2 00E-04
5 10E-01 | 2 00E-04 | 3 IUE-UI
1 50E-02 | 1 50E-02 | 3 10E+01 | Does Result
Support Closure
Under RRS1? | Yes | Yes | No N | N | No | Yes | No | Yes | N
N | 8 | o
N | o
N | Yes | Yes | o
N | Yes | Yes | Yes | | Background
UTL ¹
(mg/L) | 0 2
0 0002 | 0.2 | 0 0016 | 0 0016 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | | Validation
Qualifier | n o | : E | o 2 | 2 | 20 | -7 | 2 | 2 | 7 | 2 | 77 | 2 | 20 |) | 2 | 'n | 2 | > | | Result Laboratory Validation
(mg/L) Qualifier Qualifier | Dг | ם ב | L | ш | | ıτ | | | | | | | | | | | | | | Result
(mg/L) | 0 0002
0 00146 | 0 0002 | 0 0293 | 0 00411 | 0 167 | 0 0189 | 0 163 | 0 111 | 0 363 | 0 255 | 0 133 | 0 483 | 0 0279 | 0 0791 | 0 158 | 0 0347 | 0 0723 | 0 101 | | Reporting
Limit
(mg/L) | 0 0002 | 0 0002 | 0 005 | 0 005 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | | Parameter | Benzo(a)pyrene
Silver | Benzo(a)pyrene | Lead | Lead | Zinc | End Depth
(FT) | 2 | 4 4 | t 0 | 4 | 7 | 4 | 2 | 4 | 2 | 7 | 4 | 4 | 7 | 4 | 7 | 4 | 7 | 4 | | Start Depth End Depth
(FT) (FT) | 00 | 0 0 | , 0 | 7 | 0 | 7 | 0 | 7 | 0 | 0 | 7 | 2 | 0 | 2 | 0 | 8 | 0 | 7 | | ∥ | 5-Dec-00
5-Dec-00 | 5-Dec-00 | Sample
Location Sample No. Date | BM0021
BM0021 | BM0022 | BM0019 | BM0020 | BM0003 | BM0004 | BM0023 | BM0024 | BM0031 | BM0032 | BM0033 | BM0034 | BM0005 | BM0006 | BM0025 | BM0026 | BM0035 | BM0036 | | Location | OT3801SAC
OT3801SAC | OT3801SAC | OT3848SAC | OT3848SAC | S52C | S52C | S52F | \$52F | S52W | S52W | S52W | S52W | S53C | S53C | S53F | S53F | S53W | S53W | Summary of SPLP Results Compared to Background and MSCs Aerospace Museum Site NAS Fort Worth JRB, Texas (Page 2 of 3) | <u> </u> | اہ | ľ | | | | | | | | | | | | | | | | | | | 63 | 86 | 2 | |--------------------------------|-------------|----------------|----------|----------------|----------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | Does Result
Support Closure | Under RRS27 | Yes | Yes | Yes | Yes | Yes | Yes | 2 | NA
V | £ | Ϋ́ | Yes | A | 2 | AN | Yes | N
A | Yes | Yes | ΑĀ | N
A | Ā | ¥
V | | TNRCC MSC 2 | (mg/L) | 3 10E+01 | 1 50E-02 | 3 10E+01 | Does Result
Support Closure | Under RRS17 | N _O | No | N _O | No | o _N | No | °Z | Yes | 2 | Yes | Š | Yes | S
S | Yes | Š. | Yes | Š. | S
N | Yes | Yes | Yes | Yes | | Background
UTL 1 | (mg/L) | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 0016 | 0 118 | 0 0016 | 0 118 | 0 0016 | 0 118 | 0 0016 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | 0 118 | | Validation | Qualifier | > L | λί | 7 | 2 | 2 | 2 | | 7 | 2 | 2 | | 7 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 20 | è | | Laboratory Validation | Qualifier | Result | (mg/L) | 0 331 | 0 157 | 0 317 | 0 185 | 0 149 | 0 148 | 0 0714 | 0 0837 | 0 0451 | 0 0549 | 0 00761 | 0 045 | 0 0385 | 66600 | 0 384 | 0 1 | 0 549 | 0 494 | 0 0724 | 0 0371 | 0 044 | 0 0481 | | Reporting
Limit | (mg/L) | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 005 | 0 02 | 0 005 | 0 02 | 0 005 | 0 02 | 0 005 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | 0 02 | | | Parameter | Zınc | Zinc | Zinc | Zinc | Zinc | Zınc | Lead | Zinc | Lead | Zinc | Lead | Zınc | Lead | Zinc | Start Depth End Depth | (FT) | 2 | 4 | 7 | 4 | 8 | 4 | 8 | 7 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 4 | 2 | 4 | 8 | 4 | 8 | 4 | | start Depth | (<u>I</u> | 0 | 7 | 0 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 7 | 2 | 7 | 0 | 7 | 0 | 8 | 0 | ~ | 0 | 2 | | | Date | 5-Dec-00 | | Sample No | BM0007 | BM0008 | BM0027 | BM0028 | BM0037 | BM0038 | BM0009 | BM0009 | BM0010 | BM0010 | BM0011 | BM0011 | BM0012 | BM0012 | BM0029 | BM0030 | BM0039 | BM0040 | BM0013 | BM0014 | BM0015 | BM0016 | | | Location | S54C | S54C | S54F | S54F | S54W | S54W | S55C | S55C | S55C | S55C | S55C | S25C | S55C | S55C | S55F | S55F | S55W | S55W | S58C | S58C | S59C | S59C | ## Summary of SPLP Results Compared to Background and MSCs NAS Fort Worth JRB, Texas Aerospace Museum Site (Page 3 of 3) | | | | | | | Reporting | | | | Background | Does Result | | Does Result | |----------|------------|----------|-------------|-----------------------|-------------|-----------|--------|---------------------|------------------------------|------------|-----------------|-------------|-----------------| | | | Sample | Start Depth | Start Depth End Depth | | Limit | Result | Laboratory | Result Laboratory Validation | - 15 | Support Closure | TNRCC MSC 2 | Support Closure | | Location | Sample No. | Date | (FT) | (FT) | Parameter | (mg/L) | (mg/L) | Qualifier Qualifier | Qualifier | (mg/L) | Under RRS12 | | Under RRS27 | | Sezc | BM0017 | 5-Dec-00 | 0 | 2 | Nickei | 0.01 | 0.0188 | 4. | 20 | 0.0204 | Yec | 2 NOF+00 | ΔN | | (000 | | | | 1 1 | | | 5 | | • | 1040 | ? | 00 JON 3 | <u> </u> | | 2020 | SM0017 | 9-Dec-00 | 0 | 7 | Zinc | 0 02 | 0 112 | | אַנ | 0 118 | Yes | 3 10E+01 | Ϋ́ | | SA2C | BM0018 | S.Dec.00 | c | ٧ | Allokol | 5 | 8000 | u | ě | 7000 | > | 0071100 | 414 | | | | 3 | J | • | ואַכּאַמּוּ | 5 | | _ | 2 | 10200 | SD- | 2 00ET00 | Š | | S62C | BM0018 | 5-Dec-00 | 7 | 4 | Zinc | 0 02 | 0 0501 | | 'n | 0 118 | Yes | 3 10E+01 | AA | MSC = Medium Specific Concentration NA = not applicable RRS1 = Risk Reduction Standard 1 RRS2 = Risk Reduction Standard 2 TNRCC = Texas Natural Resources Conservation Commission UTL = Upper Tolerance Limit Footnotes: UTLs denved from Final Draft Basewide Background Study, Jacobs Engineering, 1998 ² TNRCC, 1999, "Updated Examples of Standard No. 2, Appendix II Medium-Specific Concentrations (MSCs) - Industrial Setting", July 14 Laboratory Qualifier Definitions: = The analyte was positively identified U = The analyte was analyzed for, but not detected The associated numerical value is at or below the MDL F = The analyte was positively identified but the associated numerical value is below the reporting limit J = The analyte is present, but reported value may not be accurate or precise UJ = The analyte was not detected at the estimated reporting limit shown nv = not validated #### Table 3-1 #### Summary of Soil Samples and Analyses During 2001 Excavation Activities Aerospace Museum Site NAS Fort Worth JRB, Texas (Page 1 of 3) | | _ | | | Carrets | | |------------|-----------------------------------|---------------|-----------|--------------------|---| | Sample | | | Date | Sample | | | Location | Sample Name | Sample Number | Sampled | Depth ¹ | Analytical Suite | | | irmation Samples from Initial Exc | | | | | | East Floor | S55C-SO-BM0045-REG | BM0045 | 23-May-01 | | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | West Wall | S55C-SO-BM0043-REG | BM0043 | 23-May-01 | 0-3 0' | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | South Wall | S55C-SO-BM0044-REG | BM0044 | 23-May-01 | | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | North Wall | S55C-SO-BM0042-REG | BM0042 | 23-May-01 | 0-3 0 | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | Floor | S55C-SO-BM0046-REG | BM0046 | 23-May-01 | 3 0-3 5' | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | | verification Samples | | | | | | S55C-N1 | S55C-N1-SS-BM0047-REG | BM0047 | 18-Jul-01 | | Lead by SW6010B | | | S55C-N1-SS-BM0047MS-MS | BM0047MS | 18-Jul-01 | | Lead by SW6010B | | | S55C-N1-SS-BM0047MSD-MSD | BM0047MSD | 18-Jul-01 | | Lead by SW6010B | | | S55C-N1-SO-BM0048-REG | BM0048 | 18-Jul-01 | 4 5-5 0' | Lead by SW6010B | | | S55C-N1-SO-BM0049-REG | BM0049 | 18-Jul-01 | 7 5-8 0' | Lead by SW6010B | | | S55C-N1-SO-BM0050-FD | BM0050 | 18-Jul-01 | | Lead by SW6010B | | S55C-N2 | S55C-N2-SS-BM0051-REG | BM0051 | 18-Jul-01 | | Lead by SW6010B | | | S55C-N2-SO-BM0052-REG | BM0052 | 18-Jul-01 | 4 5-5 0' | Lead by SW6010B | | | S55C-N2-SO-BM0053-REG | BM0053 | 18-Jul-01 | 7 5-8 0' | Lead by SW6010B | | S55C-N3 | S55C-N3-SS-BM0054-REG | BM0054 | 18-Jul-01 | | Lead by SW6010B | | | S55C-N3-SO-BM0055-REG | BM0055 | 18-Jul-01 | | Lead by SW6010B | | | S55C-N3-SO-BM0056-REG | BM0056 | 18-Jul-01 | 7 5-8 0' | Lead by SW6010B | | S55C-N4 | S55C-N4-SS-BM0092-REG | BM0092 | 23-Jul-01 | | Lead by SW6010B | | S55C-N5 | S55C-N5-SS-BM0093-REG | BM0093 | 23-Jul-01 | 1 5-2 0' | Lead by SW6010B | | S55C-N6 | S55C-N6-SS-BM0094-REG | BM0094 | 23-Jul-01 | | Lead by SW6010B | | S55C-N7 | S55C-N7-SS-BM0107-REG | BM0107 | 26-Jul-01 | | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | S55C-N8 | S55C-N8-SS-BM0108-REG | BM0108 | 26-Jul-01 | | Lead by SW6010B | | S55C-N9 | S55C-N9-SS-BM0109-REG | BM0109 | 26-Jul-01 | | Lead by SW6010B | | S55C-N10 | S55C-N10-SS-BM0110-REG | BM0110 | 26-Jul-01 | | Lead by SW6010B | | S55C-N11 | S55C-N11-SS-BM0111-REG | BM0111 | 26-Jul-01 | | Lead by SW6010B | | S55C-NE1 | S55C-NE1-SS-BM0095-REG | BM0095 | 23-Jul-01 | | Lead by SW6010B | | S55C-NE2 | S55C-NE2-SS-BM0112-REG | BM0112 | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B | | | S55C-NE3-SS-BM0114-REG | BM0114 | 26-Jul-01 | | Lead by SW6010B | | | S55C-NE3-SS-BM0114FD-FD | BM0114FD | 26-Jul-01 | | Lead by SW6010B | | | S55C-NW1-SS-BM0096-REG | Вм0096 | 23-Jul-01 | 1 5-2 0' | Lead by SW6010B | | | S55C-NW2-SS-BM0113-REG | BM0113 | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B | | | S55C-NW3-SS-BM0115-REG | BM0115 | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B | | , | S55C-E1-SS-BM0057-REG | BM0057 | 18-Jul-01 | 1 5-2 0' | Lead by SW6010B | | | S55C-E1-SO-BM0058-REG | BM0058 | 18-Jul-01 | 4 5-5 0' | Lead by SW6010B | | | S55C-E1-SO-BM0059-REG | BM0059 | 18-Jul-01 | 7 5-8 0' | Lead by SW6010B | | | S55C-E1-SO-BM0060-FD | BM0060 | 18-Jul-01 | 7 5-8 0' | Lead by SW6010B | | + | S55C-E2-SS-BM0061-REG | BM0061 | 18-Jul-01 | 1 5-2 0' | Lead by SW6010B | | |
S55C-E2-SO-BM0062-REG | BM0062 | 18-Jul-01 | 4 5-5 0' | Lead by SW6010B | | | S55C-E2-SO-BM0063-REG | BM0063 | 18-Jul-01 | | Lead by SW6010B | | | S55C-E3-SS-BM0064-REG | BM0064 | 18-Jul-01 | 1 5-2 0' | Lead by SW6010B | | | S55C-E3-SO-BM0065-REG | BM0065 | 18-Jul-01 | | Lead by SW6010B | | | S55C-E3-SO-BM0066-REG | BM0066 | 18-Jul-01 | | Lead by SW6010B | | | S55C-S1-SS-BM0067-REG | BM0067 | 18-Jul-01 | | Lead by SW6010B | | | S55C-S1-SO-BM0068-REG | BM0068 | 18-Jul-01 | | Lead by SW6010B | | | S55C-S1-SO-BM0069-REG | BM0069 | 18-Jul-01 | | Lead by SW6010B | | - | S55C-S2-SS-BM0070-REG | BM0070 | 18-Jul-01 | | Lead by SW6010B | | | S55C-S2-SO-BM0071-REG | BM0071 | 18-Jul-01 | | Lead by SW6010B | | | \$55C-S2-SO-BM0072-FD | BM0072 | 18-Jul-01 | | Lead by SW6010B | | | \$55C-S2-SO-BM0073-REG | BM0073 | 18-Jul-01 | | Lead by SW6010B | | - | S55C-S3-SS-BM0074-REG | BM0074 | 18-Jul-01 | | Lead by SW6010B | | _ | S55C-S3-SO-BM0075-REG | BM0075 | 18-Jul-01 | | Lead by SW6010B | | | S55C-S3-SO-BM0076-REG | BM0076 | 18-Jul-01 | | Lead by SW6010B | | - | S55C-W1-SS-BM0077-REG | BM0077 | 18-Jul-01 | | Lead by SW6010B | | <u> </u> | S55C-W1-SO-BM0078-REG | BM0078 | 18-Jul-01 | | Lead by SW6010B | | ⊢ | S55C-W1-SO-BM0078MS-MS | BM0078MS | 18-Jul-01 | | Lead by SW6010B | | | S55C-W1-SO-BM0078MSD-MSD | BM0078MSD | 18-Jul-01 | | Lead by SW6010B | | | S55C-W1-SO-BM0079-REG | BM0079 | 18-Jul-01 | 7 5-8 0' | Lead by SW6010B | Table 3-1 #### Summary of Soil Samples and Analyses During 2001 Excavation Activities Aerospace Museum Site NAS Fort Worth JRB, Texas (Page 2 of 3) | Sample | | | Date | Sample | | |------------|------------------------------------|--------------------|-----------|--------------------|---| | Location | Sample Name | Sample Number | Sampled | Depth ¹ | Analytical Suite | | hase 1 Con | firmation Samples from Initial Exc | avation (Continued |) | | | | 355C-W2 | S55C-W2-SS-BM0080-REG | BM0080 | 18-Jul-01 | 1 5-2 0' | Lead by SW6010B | | | S55C-W2-SO-BM0081-REG | BM0081 | 18-Jul-01 | 4 5-5 0' | Lead by SW6010B | | | S55C-W2-SO-BM0082-FD | BM0082 | 18-Jul-01 | 4 5-5 0' | Lead by SW6010B | | | S55C-W2-SO-BM0083-REG | BM0083 | 18-Jul-01 | 7 5-8 0' | Lead by SW6010B | | S55C-C1 | S55C-C1-SO-BM0084-REG | BM0084 | 18-Jul-01 | | Lead by SW6010B | | | S55C-C1-SO-BM0085-REG | BM0085 | 18-Jul-01 | 7 5-8 0' | Lead by SW6010B | | hase 2 Con | firmation Samples | | | | <u> </u> | | 355C-V1 | S55C-V1-SS-BM0097-REG / | BM0097 | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | S55C-V2 | S55C-V2-SS-BM0098-REG | BM0098 | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | | S55C-V2-SS-BM0098FD-FD | BM0098FD | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | 55C-V3 | S55C-V3-SS-BM0104-REG | BM0104 | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | | S55C-V3-SS-BM0104MS-MS | BM0104MS | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B | | | S55C-V3-SS-BM0104MSD-MSD | BM0104MSD | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B | | 555C-V5 | S55C-V5-SS-BM0099-REG | BM0099 | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | 55C-V6 | S55C-V6-SS-BM0103-REG | BM0103 | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | 555C-V7 | S55C-V7-SS-BM0100-REG | BM0100 | 26-Jul-01 | 0 0-2 0' | Lead by SW6010B & SPLP Lead by SW1312/SW6010B | | 555C-V8 | S55C-V8-SO-BM0101-REG | BM0101 | 26-Jul-01 | 3 0-3 0' | Lead by SW6010B | | S55C-V9 | S55C-V9-SO-BM0102-REG | BM0102 | 26-Jul-01 | 3 0-3 0' | Lead by SW6010B | | hase 3 Con | firmation Soil Samples | | | | | | 555C-VN1 | S55C-VN1-SO-BM0116-REG | BM0116 | 21-Aug-01 | 0 0-4 0' | Lead by SW6010B | | 555C-VN2 | S55C-VN2-SO-BM0117-REG | BM0117 | 21-Aug-01 | 0 0-4 0' | Lead by SW6010B | | _ | S55C-VN2-SO-BM0118-FD | BM0118 | 21-Aug-01 | 0 0-4 0' | Lead by SW6010B | | 55C-VE1 | S55C-VE1-SO-BM0119-REG | BM0119 | 20-Aug-01 | 0 0-3 0' | Lead by SW6010B | | | S55C-VE1-SO-BM0119MS-MS | BM0119MS | 20-Aug-01 | 0 0-3 0' | Lead by SW6010B | | | S55C-VE1-SO-BM0119MSD-MSD | BM0119MSD | 20-Aug-01 | 0 0-3 0' | Lead by SW6010B | | 55C-VE2 | S55C-VE2-SO-BM0120-REG | BM0120 | 20-Aug-01 | 0 0-3 0 | Lead by SW6010B | | 555C-VE3 | S55C-VE3-SO-BM0121-REG | BM0121 | 21-Aug-01 | 0 0-4 0' | Lead by SW6010B | | 555C-VE4 | S55C-VE4-SO-BM0122-REG | BM0122 | 21-Aug-01 | 0 0-4 0' | Lead by SW6010B | | S55C-VS1 | S55C-VS1-SO-BM0123-REG | BM0123 | 21-Aug-01 | 0 0-3 0' | Lead by SW6010B | | 555C-VS2 | S55C-VS2-SO-BM0124-REG | BM0124 | 21-Aug-01 | 0 0-3 0' | Lead by SW6010B | | 555C-VW1 | S55C-VW1-SO-BM0125-REG | BM0125 | 23-Aug-01 | 0 0-3 0' | Lead by SW6010B | | 555C-VW2 | S55C-VW2-SO-BM0126-REG | BM0126 | 23-Aug-01 | 0 0-3 0' | Lead by SW6010B | | 555C-VW3 | S55C-VW3-SO-BM0127-REG | BM0127 | 23-Aug-01 | 0 0-3 0' | Lead by SW6010B | | | S55C-VW3-SO-BM0128-FD | BM0128 | 23-Aug-01 | 0 0-3 0' | Lead by SW6010B | | 555C-VW4 | S55C-VW4-SO-BM0129-REG | BM0129 | 23-Aug-01 | 0 0-3 0' | Lead by SW6010B | | 555C-VW5 | S55C-VW5-SO-BM0132-REG | BM0132 | 23-Aug-01 | 0 0-3 0' | Lead by SW6010B | | 555C-VF1 | S55C-VF1-SO-BM0131-REG | BM0131 | 21-Aug-01 | 4 0-4 5' | Lead by SW6010B | | eptember 2 | 001 Soil Samples Near Spur 341 | | | | <u> </u> | | 55C-FL1 | S55C-FL1-SO-BM0132A-REG | BM0132A | 6-Sep-01 | 1 0-1 5' | Lead by SW6010B | | S55C-FL0 | S55C-FL0-SO-BM0133-REG | BM0133 | 6-Sep-01 | 1 0-1 5' | Lead by SW6010B | | 55C-W1-0 | S55C-W1-0-SO-BM0134-REG | BM0134 | 6-Sep-01 | 1 0-1 5' | Lead by SW6010B | | 55C-W1-1 | S55C-W1-1-SO-BM0135-REG | BM0135 | 6-Sep-01 | 1 0-1 5' | Lead by SW6010B | | 55C-W1-2 | S55C-W1-2-SO-BM0136-REG | BM0136 | 6-Sep-01 | 1 0-1 5' | Lead by SW6010B | | 55C-W1-3 | S55C-W1-3-SO-BM0137-REG | BM0137 | 6-Sep-01 | 1 0-1 5' | Lead by SW6010B | | 55C-W1-4 | S55C-W1-4-SO-BM0138-REG | BM0138 | 6-Sep-01 | 1 0-1 5' | Lead by SW6010B | | 55C-W1-5 | S55C-W1-5-SO-BM0139-REG | BM0139 | 6-Sep-01 | | Lead by SW6010B | | 55C-W2-0 | S55C-W2-0-SO-BM0140-REG | BM0140 | 6-Sep-01 | | Lead by SW6010B | | 55C-W2-1 | S55C-W2-1-SO-BM0141-REG | BM0141 | 6-Sep-01 | | Lead by SW6010B | | 55C-W2-2 | S55C-W2-2-SO-BM0142-REG | BM0142 | 6-Sep-01 | | Lead by SW6010B | | 55C-W2-3 | S55C-W2-3-SO-BM0143-REG | BM0143 | 6-Sep-01 | | Lead by SW6010B | | 55C-W2-4 | S55C-W2-4-SO-BM0144-REG | BM0144 | 6-Sep-01 | | | | 55C-W3-0 | S55C-W3-0-SO-BM0145-REG | BM0145 | 6-Sep-01 | | Lead by SW6010B | | 55C-W3-1 | S55C-W3-1-SO-BM0146-REG | BM0146 | 6-Sep-01 | | Lead by SW6010B | | 55C-W3-2 | S55C-W3-2-SO-BM0147-REG | BM0147 | 6-Sep-01 | 1 0-1 5' | Lead by SW6010B | | 55C-W3-3 | S55C-W3-3-SO-BM0148-REG | BM0148 | 6-Sep-01 | | Lead by SW6010B | #### Table 3-1 #### Summary of Soil Samples and Analyses During 2001 Excavation Activities Aerospace Museum Site NAS Fort Worth JRB, Texas (Page 3 of 3) | Sample
Location | Sample Name | Sample Number | Date
Sampled | Sample
Depth ¹ | Analytical Suite | |--------------------|-------------------------------|---------------|-----------------|------------------------------|------------------| | September 20 | 01 Soil Samples Near Spur 341 | <u>-</u> | | | | | 341-W1 | 341-W1-SS-BM0149-REG | BM0149 | 20-Sep-01 | 0 0-1 0' | Lead by SW6010B | | 341-W2 | 341-W2-SS-BM0150-REG | BM0150 | 20-Sep-01 | 0 0-1 0' | Lead by SW6010B | | 341-W3 | 341-W3-SS-BM0151-REG | BM0151 | 20-Sep-01 | 0 0-1 0' | Lead by SW6010B | ¹ Sample Depth is in feet below ground surface REG - Field sample FD - Field duplicate MS - Matnx spike MSD - MS duplicate SPLP - Synthetic precipitation leaching procedure Summary of 2001 Analytical Detections in Soil Compared to Background and MSCs Aerospace Museum Site NAS Fort Worth JRB, Texas (Page 1 of 4) | | Ļ | 11 | ı | | | | | | ı | ł | C | ່ວ | J C |) | | 3 | 1 | |-------------|------------------|--|---|---|--|-------------|-------------|----------------
--|--|---|-----------------------|--|--
--|--
--
--
--
--
--|--|---
--
--
--
--
---|--|--|---|--
--|--|--|--
--
--
--	--	--	--	--
--	--	--		Support
Qualifier Qualifier UTL¹ (mg/kg) RRS 1? (mg/kg) BM0042 23-May-01 0 3 Lead 11 248 nv 30.97 No 15	Start Depth	Start Depth	Start Depth	Start Depth End Depth Limit Result Laboratory Validation Background Closure Under MSC ² Sample No Sample Date (ft bgs) (ft bgs) Parameter (mg/kg) (mg/kg) Qualifier UTL ¹ (mg/kg) RRS 1? 1. (mg
Continued Cosults United Result Continued Cosults United Result Continued Cosults United Result Result Continued Cosults United Result Result Laboratory Validation Result Laboratory Validation Result Laboratory Validation Result Laboratory Result Result Laboratory Result </td><td> Sample No Sample Date (th.bgs) (th.bgs</td><td> Sample No. Sample Daght Fird Fir</td><td> Sample No Sample Date Rivage) Rivage Riv</td></th<></td>	Sample No Sample Date (ft bgs) bgs	Sample No Sample Date (ft bgs) Parameter (mg/kg) (mg/kg) Cualifier	Sample No Sample Date (ft bgs) Ranneter (mg/kg) (mg/kg) Qualifier Qualifier UTL¹(mg/kg) RRS 17 (mg/kg) MSC 23-May-O1 0 3 Lead 11 105 No 3097 No 15 MOO44 23-May-O1 0 3 Lead 12 146 No 3097 No 15 MOO44 23-May-O1 0 3 Lead 12 146 No 3097 No 15 MOO45 23-May-O1 0 3 Lead 12 146 No 3097 No 15 MOO45 23-May-O1 0 3 Lead 12 146 No 3097 No 15 MOO45 23-May-O1 0 3 Lead 12 146 No 3097 No 15 MOO45 23-May-O1 0 3 Lead 12 146 No 3097 No 15 MOO45 23-May-O1 0 3 Lead 12 146 No 3097 No 15 MOO45 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 872 No 17 MOO57 18-Jul-O1 75 8 Lead 11 873 No 17 MOO57 18-Jul-O1 75 8 Lead 11 873 No 17 MOO57 18-Jul-O1 75 18	Sample No Sample Date (ft bgs) (ft bgs) Parameter (mg/kg) (mg/
----------------	----------------	------------------	-----------	-----------
the standard deviation is used as the reporting limit - Concentrations that are <10x their standard deviations are considered detected but their concentration is estimated #### Where - NA not analyzed - U not detected and the reporting limit is shown. - J lead was detected but it's concentration is considered estimated 37 NAS Fort Worth JRB, Texas AMS Closure Report September 2001 **FIGURES** DMC NO / 168579es 306 INITIATOR R MCBRIDE DBAFT CHCK BY C TUMLIN 90 40 60 STARTING DATE 08/29/01 VAR TEAL STAC pyanderg DMC NO" /10821862 301 INITIATOR R MCBRIDE DRAFT CHCK BY C TUMLIN 97 Ol.60 STARTING DATE 08/29/01 VAR TEAL BEV pyanderg DMC NO"./10821362 208 INITIATOR R MCBRIDE DRAFT CHCK BY C TUMLIN STARTING DATE 08/29/01 DATE LAST REV # TAB APPENDIX A NAS Fort Worth JRB, Texas AMS Closure Report September 2001 ## APPENDIX A PREVIOUS INVESTIGATIONS 47 NAS Fort Worth JRB, Texas AMS Closure Report September 2001 Page A-1 ### Previous Investigations_ The following previous investigations have been conducted at the Aerospace Museum Site (AMS) at the Naval Air Station (NAS) Fort Worth Joint Reserve Base (JRB), former Carswell Air Force Base, Texas. #### October 1995, Site Investigation/Site Characterization, Law Engineering (LAW) Forty-nine surface soil samples and two background samples were collected from 0 to 2 feet below ground surface (bgs) using stainless-steel hand augers at locations based on a grid layout (Figure A-1). The objective of the sampling was to determine the extent of surface contamination in soils resulting from previous site activities. The soil samples were analyzed for total metals, volatile organic compounds (VOC), and semivolatile organic compounds (SVOC). Methylene chloride was detected in OT3804SA (0.00628 milligrams per kilogram [mg/kg]) below the medium-specific concentration (MSC) of 0.5 mg/kg. Toluene was detected in both background samples and 44 of 51 samples. The maximum toluene concentration detected in the background sample OT3851SA was 0.0302 mg/kg. SVOCs were detected in soil samples and in background sample OT38504SA. Polynuclear aromatic hydrocarbons (PAH) were detected in 20 soil samples out of the 49 samples collected at the site. High levels of PAHs were reported in OT3801SA, OT3814Sa, and background sample OT3851SA. Phthalates were detected in several soil samples ad also in background sample OT3851SA. Sample data for metals were compared to the maximum values obtained from the background samples OT3850SA. Aluminum, antimony, arsenic, barium, beryllium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, molybdenum, nickel, potassium, sodium, vanadium, and zinc concentrations exceeded the maximum background concentrations. ### June 1997, Demolition and Removal of Structures/Disposal of Transformers with PCB Oil, Unified Services of Texas, Inc. (UST, Inc.) UST, Inc. demolished and removed a wooden shed, an electrical equipment box, two old concrete blast shields, two concrete pads, one asphalt concrete pad, a mobile fuel test system, soil piles, a rubble pile, and loose railroad ties in the former AMS. The site was restored with clean backfill, compacted, and reseeded with native grass. Figure A-1 Surface Soil Sampling Locations October 1995, Law Engineering #### January 1997, Basewide Background Study, Jacobs Engineering Group, Inc. (Jacobs) Thirty surface soil, thirty subsurface soil, twelve groundwater, eight surface water, and eight stream sediment samples were collected to establish basewide background concentrations of inorganic constituents. The U.S. Environmental Protection Agency (EPA) Tolerance Interval (TI) method was used to calculate background concentrations in various matrices, including unfiltered groundwater samples, sediment samples, and organic constituents detected in surface and subsurface soil for organic and inorganic constituents. In 1996, Jacobs compared the results reported in the LAW 1996 report to background concentrations reported in the Jacobs Basewide Background Study. According to the comparison, cadmium, chromium, cobalt, copper, and lead exceeded the upper tolerance limit (UTL)_{95 99} for surface soils. Although the general concentrations of metals exceeded background concentrations, only sample OT3840SA exceeded the background concentrations and the MSC of 1,000 mg/kg for lead. Further sampling was therefore recommended for lead. Methylene chloride, a common laboratory contaminant, was detected below the MSC of 0.5 mg/kg. Low concentrations of toluene were detected throughout the site, and were concluded to be anthropogenic. Low concentrations of SVOCs were detected throughout the site and below the TNRCC Soil/Air and Ingestion for Industrial (SAI-Ind) MSC Standards. It was also concluded that PAHs represent anthropogenic background concentrations, and did not require additional sampling. #### May 1997, Draft Letter Report for Results of Sampling at the Aerospace Museum Site, Jacobs Twenty-seven soil samples were collected at the AMS to confirm the analytical results collected by LAW in October 1995 (Table A-1). Samples were analyzed for arsenic, beryllium, chromium, lead, nickel, and antimony. Leaching tests were also conducted on these samples using synthetic precipitation leaching procedure (SPLP). The results were compared to the RRS 2 SAI-Ind values. Arsenic, chromium, nickel, and antimony were not detected in any of the samples. Beryllium was above the RRS 2 Ground Water Industrial (GW-Ind) Standards of 0.004 milligrams per liter (mg/L), with a maximum concentration of 0.0144 mg/L. Lead concentrations ranged from 0.0206 to 0.0629 mg/L, and exceeded the RRS2 GW-Ind Standards of 0.015 mg/L.			•	
0.0030	0.0300	F	_В	0.004
	0.015	No .	Yes	
District				
--	-----------	-------------------	--------------------------	-------------
Measurements	(Specify)		<u> </u>	
Becovery				
nothing herbreams 1 1/1" der to brown, romstains 2 1/1" grandy sty Class 1 1/1" 1	Elev (n)	Description of Materials	USCS/ Liho	Screening Results
States (1985) For Worth John Research States (1985) B			HTRW DRILLING	a LC
</u>			Designation of Drill Shapfaf	
DECEMBER 2000 INVESTIGATION # Naval Air Station (NAS) Fort Worth Joint Reserve Base Carswell Aerospace Museum Site (AMS) Sampling Data Quality Summary Report Project No 768579 Delivery Order 0039 #### December 2000 #### 10 Overview Thirty (36) soil samples were collected in support of the Naval Air Station (NAS) Fort Worth Joint Reserve Base Carswell Aerospace Museum Site (AMS) Sampling—Samples were submitted to Kemron Environmental Services (KEMM) and analyzed for the following analyses—benzo(a) pyrene by SW8310 , synthetic precipitate leaching procedure (SPLP) benzo(a)pyrene by SW1312/SW8310, metals by SW6010B and synthetic precipitate leaching procedure (SPLP) metals by SW1312/SW6010B—QC samples consisted of the following types and quantities—four (4) field duplicates (FD), three (3) matrix spike/matrix spike duplicate (MS/MSD) and one (1) equipment rinsate (ER)—An analytical summary table cross-referencing sample location, sample number, sample date and contaminants of concern is presented in Attachment A Greater than ten (10) percent of samples were validated and reviewed in accordance with the "Naval Air Station (NAS) Fort Worth Joint Reserve Base Carswell Field Basewide Quality Assurance Project Plan (IT, February 2000)" Table 1 0-1 and Table 1 0-2 defines validation data and laboratory data qualifiers assigned to analytical results, respectively. Table 1.0-1 Validation Data Qualifier Definitions	Validation Qualifier	Validation Data Qualifier Definition		-------------------------
-----------------------------	--		L0012122	BM0022 (MS/MSD) (SPLP SW8310)
L0012122-64 L0012122-65 (SPLP)	05 Dec 00	0020.	Zinc by SW60108 & SPLP Zinc by SW1312/SW60108	
------------------	------------------	------------------	------------------	------------------
mg/kg	ηgγ	т9/кд	ηgγ	ηđη
that contain detectable concentrations. Overall sampling and analysis precision will be assessed using field duplicate (FD) samples—Laboratory precision is assessed by laboratory control sample/laboratory control sample duplicate (LCS/LCSD) and matrix spike/matrix spike duplicate (MS/MSD) recoveries. Results indicate that an acceptable analytical precision was achieved. Table 2 4-1 lists precision acceptance criteria for LCS/LCSD and MS/MSD and field duplicate comparisons Table 2.4-1 Precision Acceptance Criteria.	Field/Laboratory	Ma	trix	
S55C-E1-SO-BM0060-FD	BM0060	L0107312-16	18-Jul-01	Lead by SW6010B
BM0137 | L0109128-06 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W1-4 | S55C-W1-4-SO-BM0138-REG | BM0138 | L0109128-07 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W1-5 | S55C-W1-5-SO-BM0139-REG | BM0139 | L0109128-08 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W2-0 | S55C-W2-0-SO-BM0140-REG | BM0140 | L0109128-09 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W2-1 | S55C-W2-1-SO-BM0141-REG | BM0141 | L0109128-10 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W2-2 | S55C-W2-2-SO-BM0142-REG | BM0142 | L0109128-11 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W2-3 | S55C-W2-3-SO-BM0143-REG | BM0143 | L0109128-12 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W2-4 | S55C-W2-4-SO-BM0144-REG | BM0144 | L0109128-13 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W3-0 | S55C-W3-0-SO-BM0145-REG | BM0145 | L0109128-14 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W3-1 | S55C-W3-1-SO-BM0146-REG | BM0146 | L0109128-15 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W3-2 | S55C-W3-2-SO-BM0147-REG | BM0147 | L0109128-16 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | S55C-W3-3 | S55C-W3-3-SO-BM0148-REG | BM0148 | L0109128-17 | 06-Sep-01 | 06-Sep-01 Lead by SW6010B | | | A | Aerospace N | luseum Additior | nal Samp | ace Museum Additional Sampling - Excavation | |-----------------|----------------------|------------------|-----------------|-----------------|---| | Sample Location | Sample Name | Sample
Number | Laboratory ID | Date
Sampled | Analytical Suite | | 341-W1 | 341-W1-SS-BM0149-REG | BM0149 | L0109333-01 | 20-Sep-01 | 20-Sep-01 Lead by SW6010B | | 341-W2 | 341-W2-SS-BM0150-REG | BM0150 | 1.0109333-02 | 20-Sep-01 | 20-Sep-01 Lead by SW6010B | | 341-W3 | 341-W3-SS-BM0151-REG | BM0151 | L0109333-03 | 20-Sep-01 | 20-Sep-01 Lead by SW6010B | # Attachment B - Data Validation Summary Reports # **DATA VALIDATION SUMMARY REPORT** **PROJECT** Carswell Air Force Base; Aerospace Museum Site, Delivery Order 0039 LABORATORY: Kemron Environmental Services WORK ORDER: L0107312 MATRIX: Soils VALIDATION LEVEL: III ANALYSES METHODS: Metals (Lead) by SW846 6010B # 1.0 INTRODUCTION Soil samples were submitted to Kemron Environmental Services for analyses. The validated samples are listed in Table 1-1. 100% of the samples were validated and reviewed in accordance with the "EPA Functional Guidelines", and the associated methods. Validation qualifiers were assigned due to matrix and serial dilution problems. No data were rejected, specific findings are discussed in detail in the following sections. Table 1-1. Sample Information | Work | Sample | Sample | Lab ID | Metals by | Field QC | |----------|---------|--------|--------|-----------|-----------| | Order | Date | Number | | 6010B | | | Number | | | | | | | | | BM0047 | -01 | | | | | | BM0048 | -04 | | | | | | BM0049 | -05 |] | | | | | BM0050 | -06 | 1 | | | | | BM0051 | -07 | 1 | | | | | BM0052 | -08 | | | | | | BM0053 | -09 |] | | | | | BM0054 | -10 | | | | | | BM0055 | -11 |] | | | | | BM0056 | -12 | | | | | | BM0057 | -13 | Ì | į | | | | BM0058 | 14 | Ì | ł | | i | | BM0059 | -15 |] | | | | | BM0060 | -16 | 1 | | | | | BM0061 | -17 | 1 | | | | | BM0062 | -18 | 1 | | | | | BM0063 | -19 | 1 | | | | | BM0064 | -20 | | | | | | BM0065 | -21 |] | | | L0107312 | 7/18/01 | BM0066 | -22 | 7/19/01 | BM8002-ER | | | | BM0067 | -23 | } | | | | | BM0068 | -24 | | 1 | | | | BM0069 | -25 | } | | | | | BM0070 | -26 | - | | | | | BM0071 | -27 | 1 | | | | | BM0072 | -28 | 1 | | | | | BM0073 | -29 | 1 |] | | | | BM0074 | -30 | | | | | į | BM0075 | -31 | | | | | | BM0076 | -32 | 1 | 1 | | | | BM0077 | -33 | 1 | | | | ļ | BM0078 | -34 |] | | | | i | BM0079 | -37 | | | | | | BM0080 | -38 |] | } | | | | BM0081 | -39 |] | } | | | | BM0082 | -40 | 1 | | | | | BM0083 | -41 |] | | | | | BM0084 | -42 | 1 | | | | | BM0085 | -43 |] | | NA = Not Analyzed # 2.0 INORGANIC METALS (Total Lead) ANALYSIS by 6010B # 2.1 Sampling Documentation Work Order L0107312: Chain-of-custody (COC) records indicate samples were received in good condition and properly preserved. No qualifiers were assigned. # 2.2 Holding Times <u>Work Order L0107312:</u> Validated samples were analyzed within the specified holding time requirements. No qualifiers were assigned. # 2.3 Calibrations # 2.3.1 Initial Calibration Verification <u>Work Order L0107312:</u> Initial Calibration Verifications (ICVs) were performed immediately following instrument standardization and met all QC requirements. No qualifiers were assigned. # 2.3.2 Continuing Calibration Verification <u>Work Order L0107312:</u> Continuing Calibration Verifications (CCVs) were within QC control limits. No qualifiers were assigned. # 2.4 Blanks # 2.4.1 Method/Preparation Blanks Work Order L0107312: Associated method blanks (MBs) were free from contamination. No qualifiers were assigned. # 2.4.2 Calibration Blanks Work Order L0107312: Associated Continuing Calibration Blanks (CCBs) detected no contaminants. No qualifiers were assigned. # 2.4.3 Equipment Rinse Work Order L0107312: The associated equipment rinse (BM8002) detected no contaminants. No qualifiers were assigned. # 2.5 Matrix Spike (MS) /Matrix Spike Duplicate (MSD) Work Order L0107312: Three MS/MSD batches were evaluated. Total lead results for samples BM0065 through BM0085 were estimated ("J" qualified) due to low % recoveries. # 2.6 Laboratory Control Sample (LCS) Work Order L0107312: LCS analysis exhibited acceptable results. No qualifiers were assigned. # $698 \quad 137_{\color{red} 2.8 \ Field \ Duplicates}$ Work Order L0107312: Four sets of original and field duplicates were evaluated. No qualifiers were assigned. # 2.9 Serial Dilution Work Order L0107312: Serial dilutions for samples BM0047 through BM0064 reported %Difference>10%. All positive results for samples BM0047 through BM0064 were estimated ("J" qualified). # 2.10 Compound Quantitation and Project Reporting Limits Based on a Level III validation, the validated samples were identified and generally quantified appropriately. # 2.11 Overall Assessment of the Data Data for the validated samples are acceptable as qualified. # DATA VALIDATION SUMMARY REPORT **PROJECT**: Carswell Air Force Base; Aerospace Museum Site, Delivery Order 0003 LABORATORY: Kemron Environmental Services **WORK ORDER:** L0107387, L0107478, L0108550, L0109128, and L0109333 MATRIX: Soils VALIDATION LEVEL: III ANALYSES METHODS: Metals (Lead) by SW846 6010B # 1.0 INTRODUCTION Soil samples were submitted to Kemron Environmental Services for analyses. The validated samples are listed in Table 1-1. 100% of the samples were validated and reviewed in accordance with the "EPA Functional Guidelines", and associated methods. Validation qualifiers were assigned due to matrix and serial dilution problems. No data were rejected, specific findings are discussed in detail in the following sections. Table 1-1. Sample Information | Work | Sample | Sample | Lab | Metals | |-----------|---------|----------|-----|---------| | Order | Date | Number | ID | by | | Number | | | | 6010B | | <u> </u> | | BM0092 | -01 | | | | | BM0093 | -02 | | | L0107387 | 7/23/01 | BM0094 | -03 | 7/25/01 | | | | BM0095 | -04 | | | | | BM0096 | -05 | | | | | BM0098 | -01 | | | | | BM0098FD | -02 | | | | • | BM0099 | -03 | | | | | BM0100 | -04 | | | | | BM0102 | -05 | | | | | BM0103 | -06 | | | | | BM0110 | -07 | | | | | BM0111 | -08 | | | | | BM0112 | -09 | | | L0107478 | 7/26/01 | BM0114 | -10 | 7/30/01 | | | | BM0114FD | -11 |] | | | | BM0113 | -12 | 1 | | | | BM0115 | -13 | 1 | | | | BM0097 | -14 | 1 | | | | BM0104 | -15 | | | | | BM0101 | -18 | 1 | | | | BM0107 | -19 | 1 | | | | BM0108 | -20 | 1 | | | | BM0109 | -21 | 1 | | | | BM0116 | -01 | | | 1.0108550 | 8/21/01 | BM0117 | -02 | 1 | | | | BM0118 | -03 | 1 | | | 0/20/01 | BM0119 | -04 | 1 | | | 8/20/01 | BM0120 | -07 | 1 | | | | BM0121 | -08 | 1 | | | | BM0122 | -09 |] | | | 8/21/01 | BM0123 | -10 | 0/27/01 | | L0108550 | | BM0124 | -11 | 8/27/01 | | | | BM0131 | -12 | | | | | BM0125 | -13 | - | | | | BM0126 | -14 | | | | 0/22/21 | BM0127 | -15 | 1 | | | 8/23/01 | BM0128 | -16 | 1 | | | | BM0129 | -17 | | | | | BM0132 | -18 | 1 | | Work | Sample | Sample | Lab | Metals | |----------|---------|--------|-----|---------| | Order | Date | Number | ID | by | | Number | | | | 6010B | | | | BM0132 | -01 | | | | | BM0133 | -02 | 1 | | | , | BM0134 | -03 | | | | | BM0135 | -04 | ļ | | | | BM0136 | -05 | | | | | BM0137 | -06 | | | | | BM0138 | -07 | | | | | BM0139 | -08 | | | L0109128 | 9/6/01 | BM0140 | -09 | 9/10/01 | | | | BM0141 | -10 | | | | į | BM0142 | -11 | | | | | BM0143 | -12 |] | | | | BM0144 | -13 | | | | | BM0145 | -14 | | | | | BM0146 | -15 | | | | 1 | BM0147 | -16 |] | | | | BM0148 | -17 | | | | | BM0149 | -01 | | | L0109333 | 9/20/01 | BM0150 | -02 | 9/24/01 | | | | BM0151 | -03 | | # 2.0 INORGANIC METALS (Total Lead) ANALYSIS by 6010B # 2.1 Sampling Documentation All Work Orders (L0107387, L0107487, L0108550, L0109128, and L0109333): Chain-of-custody (COC) records indicate that samples were received in good condition and properly preserved. No qualifiers were assigned. # 2.2 Holding Times All Work Orders (L0107387, L0107487, L0108550, L0109128, and L0109333): Validated samples were analyzed within the specified holding time requirements. No qualifiers were assigned. # 2.3 Calibrations # 2.3.1 Initial Calibration Verification All Work Orders (L0107387, L0107487, L0108550, L0109128, and L0109333): Initial Calibration Verifications (ICVs) were performed immediately following instrument standardization and met all QC requirements. No qualifiers were assigned. # 2.3.2 Continuing Calibration Verification All Work Orders (L0107387, L0107487, L0108550, L0109128, and L0109333): Continuing Calibration Verifications (CCVs) were within QC control limits. No qualifiers were assigned. # 2.4 Blanks # 2.4.1 Method/Preparation Blanks All Work Orders (L0107387, L0107487, L0108550, L0109128, and
L0109333): Associated method blanks (MBs) were evaluated for possible cross-contamination. All were non-detect or sample results were >5X the level of contamination reported. No qualifiers were assigned. # 2.4.2 Calibration Blanks All Work Orders (L0107387, L0107487, L0108550, L0109128, and L0109333): Associated Continuing Calibration Blanks (CCBs) detected no contaminants. No qualifiers were assigned. # 2.5 Matrix Spike (MS) /Matrix Spike Duplicate (MSD) Work Order L0107387: MS/MSD were evaluated and all lead results were estimated ("J" qualified) due to high % recoveries. Work Order L0107478: MS/MSD's were evaluated and lead results for sample BM0109 were estimated ("J" qualified) due to low % recoveries and high RPD. Work Order L0108550: MS/MSD were evaluated and all QC criteria were met. No qualifiers were assigned. Work Order L0109128: MS/MSD's were evaluated and lead results for all samples were estimated ("J" qualified) due to low % recoveries and high RPD. Work Order L0109333: MS/MSD's were evaluated and all QC criteria were met. Post digestion spike was performed on sample BM0149 and reported low % recoveries. All results were estimated ("J" qualified). # 2.6 Laboratory Control Sample (LCS) All Work Orders (L0107387, L0107487, L0108550, L0109128, and L0109333): LCS analysis exhibited acceptable results. No qualifiers were assigned. # 2.7 Interference Check Samples All Work Orders (L0107387, L0107487, L0108550, L0109128, and L0109333): Interference Check Samples (ICS) analyzed were within QC control limits. No qualifiers were assigned. # 2.8 Field Duplicates All Work Orders (L0107387, L0107487, L0108550, L0109128, and L0109333): Field duplicates were evaluated and all QC criteria were met. No qualifiers were assigned. # 2.9 Serial Dilution Work Order L0107387: Serial dilution for sample BM0094 reported %Difference>10%. Results for all samples were estimated ("J" qualified). Work Order L0107478: Serial dilution for sample BM0099 reported %Difference >10%. Results for associated samples (BM0097, BM0098, BM0098FD, BM0099, BM0100, BM0101, BM0102, BM00103, BM0104, BM0107, BM0108, BM0110, BM0111, BM01113, BM00114, BM0114FD, BM0115) were estimated ("J" qualified). 10% Difference criteria was not applicable for the serial dilution performed for sample BM0109 since the sample amount was <50x the Instrument Detection Limit (IDL). Work Order L0108550: The serial dilution for sample BM0119 had %Difference>10%. Results for all samples were estimated (J qualified). Work Order L0109128: No serial dilution was associated with this sample delivery group (SDG). Post digestion spike was performed with acceptable results. Work Order L0109333: Serial dilution was evaluated and all QC criteria were met. # 2.10 Compound Quantitation and Project Reporting Limits Based on a Level III validation, the validated samples were identified and generally quantified appropriately. # 2.11 Overall Assessment of the Data Data for the validated samples are acceptable as qualified. # Attachment C - Summary of Analytical Results AMS Excavation Activities (Oct01) xls - NAS Fort Worth JRB Aerospace Museum Site (AMS) Excavation Activities Data Summary Project No. 774902 Delivery Order 0003 | | | | | | | roject No | Project No. 774902 Delivery Order 0003 | allvery Or | Jer uut | 2 | ļ | | | | | | |----------|-----------|-----------------------|-------------|----------------|---------------------|-------------------|--|------------|---------|--------------------|---------------------------|-------|-------------------------|-------------------------|------------------|-----| | Location | Sample No | Sample
Purpose | Sample Date | Sample
Type | Start Depth
(FT) | End Depth
(FT) | Parameter | CAS No | Result | Reporting
Limit | Method
Detection Limit | Units | Laboratory
Qualifier | Validation
Qualifier | Detect U | Use | | S55C | BM0042 | REG | 23-May-01 | SO | 0 | ြဲက | SPLP-Lead | 7439-92-1 | 0 007 | 0 005 | 0 0012 | mg/L | • | 2 | ≻ | > | | S55C | BM0042 | REG | 23-May-01 | SO | 0 | က | Lead | 7439-92-1 | 248 | | 0 33 | mg/kg | | 2 | `
> | > | | S55C | BM0043 | REG | 23-May-01 | SO | 0 | က | SPLP-Lead | 7439-92-1 | 0 026 | 0 005 | 0 0012 | mg/L | | 2 | ≻ | > | | S55C | BM0043 | REG | 23-May-01 | SO | 0 | က | Lead | 7439-92-1 | 105 | - | 0 33 | mg/kg | | 2 | | > | | S55C | BM0044 | REG | 23-May-01 | SO | 0 | က | SPLP-Lead | 7439-92-1 | 0 016 | 0 005 | 0 0012 | mg/L | | 'n | `
≻ | > | | S55C | BM0044 | REG | 23-May-01 | SO | 0 | က | Lead | 7439-92-1 | 146 | 12 | 0 33 | mg/kg | | 'n | ≻ | > | | S55C | BM0045 | REG | 23-May-01 | SO | 0 | ო | SPLP-Lead | 7439-92-1 | 0 013 | 0 005 | 0 0012 | mg/L | | 2 | | > | | S55C | BM0045 | REG | 23-May-01 | လွ | 0 | က | Lead | 7439-92-1 | 107 | 12 | 0 33 | mg/kg | | 2 | ·
- | > | | S55C | BM0046 | REG. | 23-May-01 | S | ო | ი
ი | SPLP-Lead | 7439-92-1 | 0 047 | 0 005 | 0 0012 | mg/L | | λU | ≻ | > | | S55C | BM0046 | REG | 23-May-01 | တ္တ | က | 35 | Lead | 7439-92-1 | 16 7 | 12 | 0 33 | mg/kg | | È | | > | | S55C-N1 | BM0047 | REG | 18-Jul-01 | SS | 15 | 2 | Lead | 7439-92-1 | 165 | 12 | 0 33 | mg/kg | Σ | 7 | • | > | | S55C-N1 | BM0048 | REG | 18-Jui-01 | SO | 4 5 | ß | Lead | 7439-92-1 | 13.5 | 12 | 0 33 | mg/kg | | 7 | | > | | S55C-N1 | BM0049 | REG | 18-Jul-01 | SO | 7.5 | œ | Lead | 7439-92-1 | 5 83 | - | 0 33 | mg/kg | | 7) | | > | | S55C-N1 | BM0050 | <u>G</u> | 18-Jul-01 | SO | 7.5 | 80 | Lead | 7439-92-1 | 6 71 | 1 | 0 33 | mg/kg | | 7 | | > | | S55C-N2 | BM0051 | REG | 18-Jul-01 | SS | 15 | 2 | Lead | 7439-92-1 | 108 | 1 | 0 33 | mg/kg | | 7 | | > | | S55C-N2 | BM0052 | REG | 18-Jul-01 | SO | 4.5 | 5 | Lead | 7439-92-1 | 12.4 | 12 | 0 33 | mg/kg | | 7 | | > | | S55C-N2 | BM0053 | REG | 18-Jul-01 | S | 7.5 | 60 | Lead | 7439-92-1 | 7 8 | - | 0 33 | mg/kg | | 7 | `
> | > | | S55C-N3 | BM0054 | REG | 18-Jul-01 | SS | 15 | 7 | Lead | 7439-92-1 | 210 | - | 0 33 | mg/kg | | 7 | | > | | S55C-N3 | BM0055 | REG | 18-Jul-01 | SO | 4 5 | S | Lead | 7439-92-1 | 11 4 | 11 | 0 33 | mg/kg | | 7 | > | > | | S55C-N3 | BM0056 | REG | 18-Jul-01 | So | 7.5 | 80 | Lead | 7439-92-1 | 6 2 9 | 1 | 0 33 | mg/kg | | 7 | > | > | | S55C-E1 | BM0057 | REG | 18-Jul-01 | SS | 15 | 2 | Lead | 7439-92-1 | 653 | = | 0 33 | mg/kg | | 7 | > | > | | S55C-E1 | BM0058 | REG | 18-Jul-01 | SO | 4
3 | ડ | Lead | 7439-92-1 | 12 5 | 12 | 0 33 | mg/kg | | 7 | > | > | | S55C-E1 | BM0059 | REG | 18-Jul-01 | S | 7.5 | 80 | Lead | 7439-92-1 | 9 34 | - | 0 33 | mg/kg | | 7 | > | > | | S55C-E1 | BM0060 | 6 | 18-Jul-01 | S | 7.5 | 80 | Lead | 7439-92-1 | 105 | - | 0 33 | mg/kg | | 7 | > | > | | S55C-E2 | BM0061 | REG | 18-Jul-01 | SS | 15 | 2 | Lead | 7439-92-1 | 596 | - | 0 33 | mg/kg | | 7 | > | > | | S55C-E2 | BM0062 | REG | 18-Jul-01 | S | 4.5 | ß | Lead | 7439-92-1 | 16 1 | 13 | 0 33 | mg/kg | | 7 | > | >- | | S55C-E2 | BM0063 | REG | 18-Juf-01 | S | 7.5 | œ | Lead | 7439-92-1 | 8 59 | _ | 0 33 | mg/kg | | 7 | > | > | | S55C-E3 | BM0064 | REG | 18-Jul-01 | SS | 15 | 7 | Lead | 7439-92-1 | 31.7 | | 0 33 | mg/kg | | 7 | > | > | | S55C-E3 | BM0065 | REG | 18-Jul-01 | SO | 4 5 | 5 | Lead | 7439-92-1 | 114 | 11 | 0 33 | mg/kg | | 7 | > | > | | S55C-E3 | BM0066 | REG | 18-Jul-01 | SO | 7.5 | ∞ | Lead | 7439-92-1 | 6 28 | 12 | 0 33 | mg/kg | | 7 | > | > | | S55C-S1 | BM0067 | REG | 18-Jul-01 | SS | 15 | 7 | Lead | 7439-92-1 | 217 | - | 0 33 | mg/kg | | 7 | | > | | S55C-S1 | BM0068 | REG | 18-Jul-01 | တ္တ | 4
Ծ | c) | Lead | 7439-92-1 | 8 96 | - | 0 33 | mg/kg | | 7 | | > | | S55C-S1 | BM0069 | REG
F | 18-Jul-01 | တ္တ | 7.5 | œ | Lead | 7439-92-1 | 8 27 | 12 | 0 33 | mg/kg | | 7 | | > | | S55C-S2 | BM0070 | REG | 18-Jul-01 | SS : | 15 | 7 | Lead | 7439-92-1 | 17 | - | 0 33 | mg/kg | | ¬ | | > | | S55C-S2 | BM0071 | ا <u>ښ</u> | 18-Jui-01 | တ္တ | 4
3 | വ | Lead | 7439-92-1 | 966 | - | 0 33 | mg/kg | | 7 | | > | | S55C-S2 | BM0072 | £ į | 18-Jul-01 | တ္သ | 4
ເບ | ro · | Lead | 7439-92-1 | 7 67 | 12 | 0 33 | mg/kg | | ¬ | | >- | | 2550-52 | BIM0073 | A
D
O | 18-Jul-01 | ္က (| G , | xo + | Lead | 7439-92-1 | 7 54 | - | 0 33 | mg/kg | | 7 | | > | | 5550-53 | BM00/4 | Y
H
H
H
H | 10-Inc-81 | S | 15 | 7 | read | 7439-92-1 | 17 6 | - | 0 33 | mg/kg | | 7 | | > | | S55C-53 | BM00/5 | KEG

 | 18-Jul-01 | S
S | 4
Ծ | വ | Lead | 7439-92-1 | 8 32 | -1 | | mg/kg | | 7 | | > | | S55C-S3 | BM0076 | REG | 18-Jul-01 | တ္တ | 7.5 | œ | Lead | 7439-92-1 | 7.2 | - | | mg/kg | | 7 | | > | | S55C-W1 | BM0077 | REG | 18-Jul-01 | SS | 15 | 2 | Lead | 7439-92-1 | 5 16 | 11 | | mg/kg | | 7 | | > | | S55C-W1 | BM0078 | REG | 18-Jul-01 | S | 4 5 | വ | Lead | 7439-92-1 | 114 | 12 | | mg/kg | Σ | 7 | | > | | S55C-W1 | BM0079 | REG | 18-Jul-01 | S | 7.5 | 6 0 | Lead | 7439-92-1 | 7 37 | - | 0 33 | mg/kg | | 7 | | >- | | S55C-W2 | BM0080 | REG | 18-Jul-01 | SS | 15 | 2 | Lead | 7439-92-1 | 11 4 | - | 0 33 | mg/kg | | 7 | ∕ | > | | S55C-W2 | BM0081 | REG | 18-Jul-01 | S | 4 5 | ω | Lead | 7439-92-1 | 12 | 12 | 0 33 | mg/kg | | 7 | | > | | S55C-W2 | BM0082 | £ | 18-Jul-01 | SO | 4 5 | 5 | Lead | 7439-92-1 | 12.9 | 12 | 0 33 | mg/kg | | 7 | ∕ | > | | S55C-W2 | BM0083 | REG | 18-Jul-01 | SO | 7.5 | 80 | Lead | 7439-92-1 | 9 15 | 11 | 0 33 | mg/kg | | 7 | ∕ | > | | S55C-C1 | BM0084 | REG | 18-Jul-01 | SO | တ | 5 2 | Lead | 7439-92-1 | 10 | 11 | 0 33 | mg/kg | | 7 | <i>-</i> | _ | | | | | | | | | | | | | | į | | | | | Aerospace Museum Site (AMS) NAS Fort Worth JRB ć **Excavation Activities Data Summary** | 8 | <u>1</u> | 4 ≻ | 4
≻ : | > > | -) | > - : | > ; | > : | > | > | > | > : | - : | > : | > : | > : | - : | > : | - : | > : | >-) | > > | - > | ≻ > | - > | - >- | > | >
 > | > : | - > | - > | - > | > | . >- | > | > | > | > | > | > | > : | > : | - > | > | |---------------------------|--------------|--------------|-----------------|----------------|----------------|-----------------|---------------|---------------|-------------|-------------|-------------|---------------|------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|---------------|-----------|----------------|------------|-------------------|------------------|-----------|-------------|---------------|------------|-----------|-----------|-----------|---------------|---|-------------|-----------|-------------|-------------|----------------|---------------|---------------|--------------|-------------| | Detect Us | > | > | > : | > > | - ; | > : | > ; | > : | > | > | > | > : | - : | > > | - ; | > > | - > | ≻ > | - > | - >- | > | > | > | > > | - > | - > | - > | · > | · > | > | > | > | > | > | > | > : | > : | - ; | > | | Validation Qualifier | 7 | ~ | 7 | | ¬ - | 7 | ≥ - | 7 | 2 | 7 | 2 | っ | 2 | ¬ | 2 | ¬ · | - , | ¬ | ≥ ' | - 7 | ≥ . | ¬ } | <u> </u> | - , - | , - | י נ | · ¬ | 7 | 7 | → - | - c | - c | , - | , – | ·> | 7 | ټ | 7 | 7 | ٠, | - > | - 7 | - 7 · | ¬ - | 7 | | Laboratory
Qualifier | Units | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/kg | mg/L | mg/kg | mg/L | mg/kg | mg/L | mg/kg | mg/L | mg/kg | mg/L | mg/kg | mg/kg | mg/kg | mg/L | mg/kg | mg/L | mg/kg | mg/L | mg/kg
mg/kg | 54/611 | mo/ka | mg/kg 64/6W | mo/ka | mg/kg | Method
Detection Limit | 0 33 | 0 33 | 0 33 | 0 33 | 0 33 | 0 33 | 0 0012 | 0 33 | 0 0012 | 0 33 | 0 0012 | 0 33 | 0 0012 | 0 33 | 0 0012 | 0 33 | 0 33 | 0 33 | 0 0012 | 0 33 | 0 0012 | 0.33 | 2,000 | 0 33 | 0 00 | 0.33 | 0 33 | 0 33 | 0 33 | 0 33 | 0.33 | 0.33 | 0.00 | 980 | 98.0 | 0.35 | 0 36 | 0 36 | 0 36 | 0 36 | 0.38 | 0 38 | 0 36 | 0 36 | 0 38 | | Reporting
Limit | - | - | - | - ; | = ; | 11 | 0 005 | - | 0 005 | - | 0 005 | 11 | 0 005 | 5.4 | 0 005 | - | 12 | | 0 005 | 11 | 0 002 | 1.4 | 900 n | -; | - ;
- ; | | . 7 | - | -1 | <u>-</u> | - ; | 7 7 | - ; | - + | | - | - | - | - | - | 11 | _ | - | - | 12 | | Result | 8 72 | 122 | 242 | 189 | 16.1 | 113 | 0 014 | 128 | 0 093 | 80 2 | 0 046 | 105 | 6000 | 203 | 0 074 | 82 7 | 149 | 9 65 | 0 036 | 381 | 0 097 | 589 | 0.073 | 94 3
5 6 | 2 6 | - C
- C
- C | 21 | 13.2 | 143 | 26 3 | 22.7 | 15.2 | 236 | t + | | 12.9 | 108 | 117 | 28 4 | 128 | 143 | 130 | 214 | 275 | 42.2 | | CAS No | 7439-92-1 | 1-28-85-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 1.70.0047 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | 7439-92-1 | | Parameter | Lead | Lead | Lead | Lead | Lead | Lead | SPLP-Lead | Lead | Lead | Lead | SPLP-Lead | Lead | SPLP-Lead | Lead | SPLP-Lead | Lead read . | Lead | רבשם | rear
lead | Lead 0 | | End Depth
(FT) | <u></u> &0 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 2 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | ო | ო | 7 | 7 | 7 | 7 | 7 | 7 (| 71 (| 7 6 | 10 | 1 73 | 2 | 7 | 7 | 7 , | 4 . | . | d (* | , ro | 4 | 4 | 6 | က | 3 | 33 | က | 3 | c: | | Start Depth | 7.5 | 15 | 15 | 1.5 | . 5 | -1
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ო | က | 0 | 0 | 0 | 0 | 0 | 0 (| 0 (| 0 0 | | 0 | 0 | 0 | 0 | 0 (| 0 (| - | - | 0 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | c | | Sample
Type | SO | SS SO | SO | SS g v | SS | SS | SS | SS | SS | ၀၀ | 2 8 | ွှဲ ပွ | S 6 | SOS | SO | SO | SO | S | SO | SO | SO | ç | | Sample Date | 18-Jul-01 | 23-Jul-01 | 23-Jul-01 | 23-Jul-01 | 23-Jul-01 | 23-Jul-01 | 26-Jul-01 26-bil-01 | 26-Jul-01 | 26-Jul-01 | 26-Jul-01 | 26-Jul-01 | 26-Jul-01 | 21-Aug-01 | 21-Aug-01 | 21-Aug-01 | 20-Aug-01 | 21-Aug-01 | 21-Aug-01 | 21-Aug-01 | 21-Aug-01 | 23-Aug-01 | 23-Aug-01 | 23-Aug-01 | 23-Aug-01 | 23.0.0.01 | | Sample | REG G | 윤 | REG 2
E | ט
ט
ט
ט | A E | REG | REG | Œ | REG | REG
E | KEG. | 5 g | ב
ב
ב
ב
ב
ב
ב
ב
ב
ב
ב
ב
ב
ב
ב
ב
ב
ב
ב | A E | REG | REG | REG | REG | REG | REG | 6 | C | | Sample No. | BM0085 | BM0092 | BM0093 | BM0094 | BM0095 | BM0096 | BM0097 | BM0097 | BM0098 | BM0098 | BM0098FD | BM0098FD | BM0099 | BM0099 | BM0100 | BM0100 | BM0101 | BM0102 | BM0103 | BM0103 | BM0104 | BM0104 | BM0107 | BM0107 | BM0108 | BM0109 | BM0110 | BM0112 | BM0113 | BM0114 | BM0114FD | BM0115 | BM0116 | BIM0117 | BIM0118 | BM0130 | BM0121 | BM0122 | BM0123 | BM0124 | BM0125 | BM0126 | BM0127 | BM0128 | D840420 | | Location | S55C-C1 | S55C-N4 | S55C-N5 | S55C-N6 | S55C-NE1 | S55C-NW1 | S55C-V1 | S55C-V1 | S55C-V2 | S55C-V2 | S55C-V2 | S55C-V2 | S55C-V5 | S55C-V5 | S55C-V7 | S55C-V7 | S55C-V8 | S55C-V9 | S55C-V6 | S55C-V6 | S55C-V3 | S55C-V3 | S55C-N7 | S55C-N7 | S55C-N8 | S55C-N9 | 055C-N10 | SSSC-NF2 | S55C-NW2 | S55C-NE3 | S55C-NE3 | S55C-NW3 | S55C-VN1 | S55C-VN2 | S55C-VNZ | SSSC-VE | SSSC-VE3 | S55C-VF4 | S55C-VS1 | S55C-VS2 | S55C-VW1 | S55C-VW2 | S55C-VW3 | S55C-VW3 | 2000 | 10/16/011 24 PM AMS Excavation Activities (Oct01) xls NAS Fort Worth JRB Aerospace Museum Site (AMS) Excavation Activities Data Summary Project No. 774902 Delivery Order 0003 | Detect Use | ≻
≻ | ≻
≻ | ≻
≻ | ≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻
≻ | ≻ | ≻
≻ | ≻
Z | >
z | |---------------------------|----------------------|----------------------|---------------|-----------|---------------|---------------|----------------------|---------------|----------------------|----------------------|---------------|---------------|----------------------|---------------|---------------|---------------|---------------|---------------|----------------------|-----------|---------------|-----------|-----------| | Validation (Qualifier | ŗ | ה | 7 | 7 | ٠ | ټ- | 'n | . | . | 7 | ٦ | ٦ | ٦ | 7 | ٠ | . | 7 | ٠, | 7 | 7 | ٠ | 2 | N
U | | Laboratory
Qualifier | כ | ⊃ | | Units | mg/kg т9/к | mg/kg т9/к | mg/kg | mg/kg | mg/kg | mg/L | mg/L | | Method
Detection Limit | 0 38 | 0 38 | 0 47 | 0.45 | 0.4 | 0.38 | 0 42 | 0.45 | 0 44 | 0.45 | 0 37 | 0 39 | 0 36 | 0 41 | 0 36 | 0 37 | 0 36 | 0 36 | 1 9 | 0 37 | 0 38 | 0 0012 | 0 0012 | | Reporting
Limit | 12 | 12 | 14 | 14 | 12 | - 1 | 13 | 14 | 13 | 14 | 11 | 12 | - | 13 | 11 | - | - | 11 | 2.2 | 11 | 12 | 0 005 | 0 002 | | Result | 114 | 999 | 106 | 165 | 983 | 232 | 933 | 689 | 33 | 44 2 | 34 5 | 853 | 609 | 553 | 12.7 | 144
44 | 453 | 756 | 141 | 53 8 | 719 | 0 005 | 0 005 | | CAS No. | 7439-92-1 | | Parameter | Lead | End Depth
(FT) | m | ო | 15 | 15 | -1
5 | 15 | 1.5 | -1
-5 | 15 | 15 | 15 | 12 | 1 25 | 15 | 15 | 15 | 15 | 15 | - | - | - | 0 | 0 | | Start Depth
(FT) | 0 | 0 | • | - | - | ~ | ~ | - | - | | - | - | - | - | - | τ | - | - | 0 | 0 | ٥ | 0 | 0 | | Sample
Type | SO | SO | S | SO | SO | SO | S | SO | SO | S | SO | SO | SO | SO | SO | S | S | SO | SS | SS | SS | BW | BW | | Sample Date | 23-Aug-01 | 23-Aug-01 | 6-Sep-01 20-Sep-01 | 20-Sep-01 | 20-Sep-01 | 18-Jul-01 | 23-Jul-01 | | Sample
Purpose | REG ÆG | REG 띪 | 표 | | Sample No. | BM0132 | BM0132 | BM0133 | BM0134 | BM0135 | BM0136 | BM0137 | BM0138 | BM0139 | BM0140 | BM0141 | BM0142 | BM0143 | BM0144 | BM0145 | BM0146 | BM0147 | BM0148 | BM0149 | BM0150 | BM0151 | BM8002 | BM8003 | | | S55C-VW5 | S55C-VW5 | S55C-FL0 | S55C-W1-0 | S55C-W1-1 | S55C-W1-2 | S55C-W1-3 | S55C-W1-4 | S55C-W1-5 | S55C-W2-0 | S55C-W2-1 | S55C-W2-2 | S55C-W2-3 | S55C-W2-4 | S55C-W3-0 | S55C-W3-1 | S55C-W3-2 | S55C-W3-3 | 341-W1 | 341-W2 | 341-W3 | AMS-FLDQC | AMS-FLDQC | # FINAL PAGE # **ADMINISTRATIVE RECORD** FINAL PAGE